Management of Non-metastatic Castration-Resistant Prostate Cancer (nmCRPC)

Putting Current Evidence into Practice

The scientific content of this program was developed by the Canadian Urological Association.

Disclosure of Commercial Support

- This program has received financial support from Bayer in the form of an educational grant.
- This program has received in-kind support from Bayer in the form of logistical support.

Editorial Committee

- Ricardo Rendon, MD, FRCSC
 Professor, Department of Urology,
 Dalhousie University
 Nova Scotia Health Authority
 Chair, GenitoUrinary Cancer Site Team,
 Cancer Care Nova Scotia
 VP Education CUA
- Krista Noonan, MD, FRCPC
 Medical Oncologist BC Cancer,
 Surrey Centre
- Frank Papanikolaou, MD, FRCSC
 Assistant Professor, University of Toronto
 Urologist, Trillium Health Partners

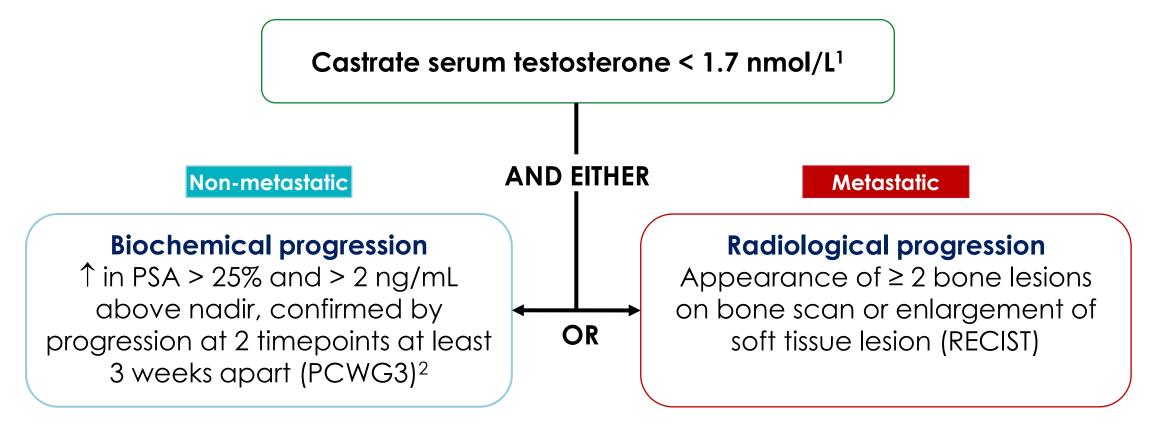
- Bobby Shayegan, MD, FRCSC
 - Associate Professor
 Urologic Oncology
 Deputy Chief of Surgery SJHH
 Head Cancer Surgery SJHH
 Chair Robotic Surgical Programme SJHH
 McMaster University
- Troy Sitland, MD, FRCSC
 Urologist, The Moncton City Hospital
- Alan So, MD, FRCSC
 Senior Research Scientist
 Vancouver Prostate Centre
 Associate Professor
 Department of Urologic Sciences
 University of British Columbia

All faculty have adhered to the:

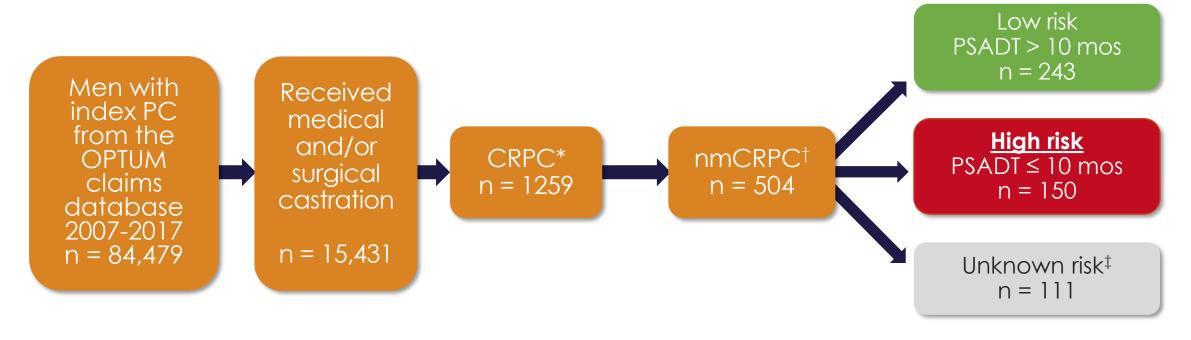
- CMA Code of Ethics and Professionalism (2018)
- CMA Guidelines for Physician Interactions with Industry (2007)
- Innovative Medicines Canada (2020)

Learning Objectives

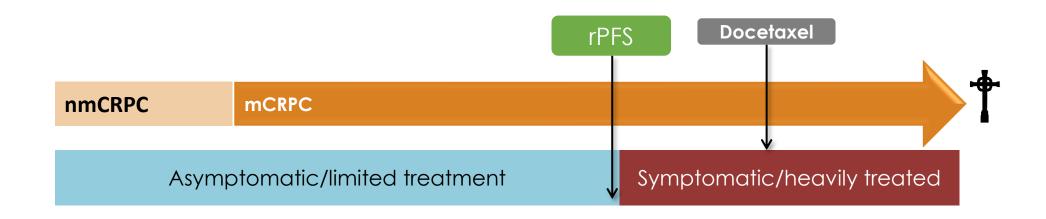
By participating in this educational session, health care providers can expect to:


- Describe the rationale for treating men with prostate cancer earlier in the non-metastatic CRPC state
- Identify patients who are appropriate for treatment of their nmCRPC
- Discuss treatment options in the management of nmCRPC
- Describe appropriate follow-up of patients with nmCRPC
- Devise strategies for implementing nmCRPC management practices

Rationale for treating earlier in the nmCRPC state


Definition of CRPC

- Definitions based on conventional bone scan and CT Scan
- PSMA-PET frequently positive in "nmCRPC" patients

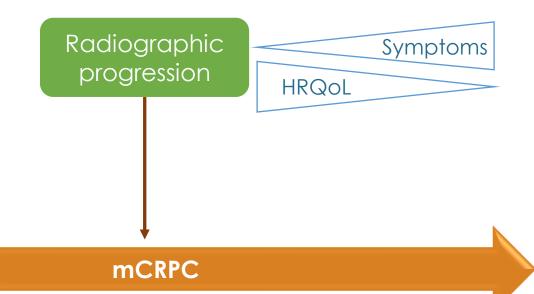

Population-Based Study on the Association of PSADT With MFS and OS in nmCRPC

• ~30% of CRPC patients had a PSADT ≤ 10 mos

Reducing the Time Spent In More Advanced Disease States is an Important Goal of Prostate Cancer Managemen

Early treatment

COMPRESSION (reducing time with symptoms, buying quality time)


Rationale for the nmCRPC Trials: Prolong the Low Burden/Asymptomatic Stage^{1,2}

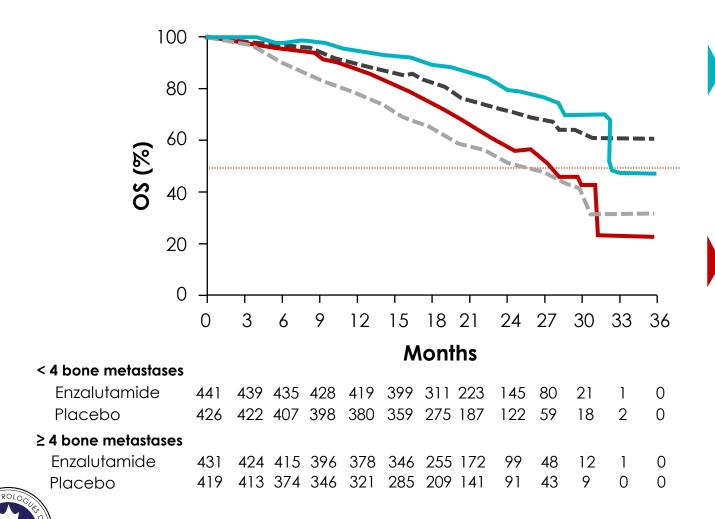
- Maintain HRQoL as long as possible
- Delay the metastatic/heavy treatment phase of the disease
- Extend OS
- Avoid causing harm

Apalutamide

Enzalutamide

Darolutamide

nmCRPC


Better Outcomes for Patients With mCRPC Who Are Treated Early

Quartile	Q1	Q2	Q3	Q4
Baseline PSA (ng/mL)	< 15.6	15.6 to < 39.5	39.5 to < 106.2	≥ 106.2
		OS		
HR (95% CI) p value	0.53 (0.39-0.72) < 0.001	0.71 (0.54-0.93) 0.014	0.87 (0.67-1.11) 0.257	1.00 (reference)

 The lower the baseline PSA, the greater the impact of abiraterone + prednisone on overall survival

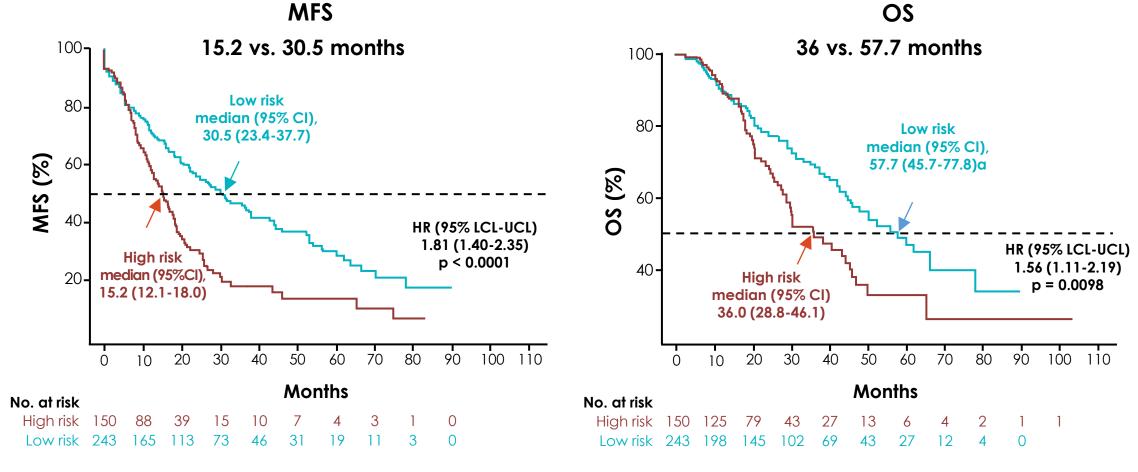
Better Outcomes for Patients With mCRPC Who Are Treated Early

Patients with < 4 bone metastases

Enzalutamide

--- Placebo

Enzalutamide reduces risk of death by HR 0.62 (CI 95%, 047-0.84)


Patients with ≥ 4 bone metastases

—— Enzalutamide

--- Placebo

risk of death by
HR 0.75 (CI 95%, 0.67-0.92)

Real-World MFS and OS in Patients With nmCRPC (PSADT ≤ 10 months vs. > 10 months)

Of the identified nmCRPC patients, ~30% were high risk (PSADT ≤ 10 months)

Identification of the high-risk nmCRPC patient

Case Presentation – "Brian"

- "Brian" is a 65-year-old man with nonmetastatic prostate cancer.
 His past medical history includes hypertension controlled with diltiazem
 - February 2015 Radical prostatectomy
 - pT3aN0R1
 - Gleason 4+3
 - Nadir PSA 0.32 ng/mL
 - CT and bone scan negative

- August 2015 Salvage radiation (no ADT)
- June 2018
 - PSA 6.5 ng/mL
 - CT and bone scan negative
 - Started on an LHRH analogue only

Brian – Follow-up

- December 2018
 - PSA nadired at 0.9 ng/mL
- April 2019
 - PSA 1.3 ng/mL
 - T < 0.7 nmol/L

- February 2020
 - PSA 5.3 ng/mL
 - T < 0.7 nmol/L
- Bone scan/CT negative for metastases
- ECOG PS 0

Discussion Questions

- How would you determine Brian's treatment options?
- Which clinical and patient characteristics would you look for to help you make your decision?
- Brian underwent PSA and T testing in April 2019 and February 2020. How frequently do you monitor PSA in your patients undergoing ADT for nmCRPC?

Diagnostic Imaging in the nmCRPC patient

Imaging Guidelines for nmCRPC - CUA 2021

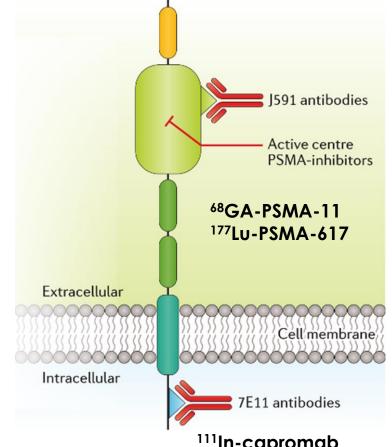
Most common imaging techniques:

- Nuclear bone scan
- Abdominal/pelvic CT scan
- Chest CT or chest X-ray optional
- Role for PSMA-PET unclear
 - Largely available only through clinical trials in Canada

Timing of Imaging:

 PSADT < 10 months or elevated PSA (> 20 ng/mL)

Every 3 to 6 months


• PSADT > 10 months

Every 6 to 12 months

Prostate Specific Membrane Antigen (PSMA) as a Target for Imaging in Prostate Cancer

- Cell surface protein highly expressed in all PCa
- Expressed in some healthy tissues (eg, salivary glands) and neovasculature of other tumours (but not normal vasculature)
- Expression increases with:
 - Tumour aggressiveness
 - Metastatic disease
 - Disease recurrence
- Substrate internalized after binding:
 - Enhanced uptake and retention in the tumour
 - High image quality for diagnostics

Majority of nmCRPC Patients with NED by Conventional Imaging Found to have N1 and M1 Disease by PSMA PET/CT

N = 200 PSMA PET/CT was positive in 98% (196/200) n = 196n = 4Tr 55%

Meta-analysis: 68Ga-PSMA-11 PET for Imaging of Intermediateto High-risk Patients Before Definitive Therapy and After Biochemical Recurrence

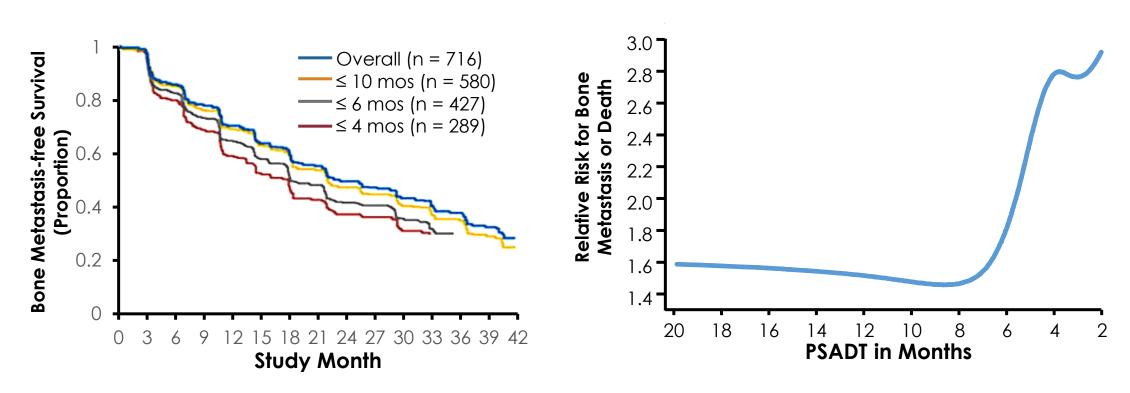
Studies using pathology as a gold standard

	Initial staging	Biochemical recurrence
n	226 patients in 5 studies	256 patients in 15 studies
Sensitivity	0.74 (95% CI 0.51-0.89)	0.99 (95% CI 0.96-1.00)
Specificity	0.96 (95% CI 0.85-0.99)	0.76 (95% CI 0.02-1.00)
Positive predictive value	0.93 (95% CI 0.86-0.99)	0.99 (95% CI 0.96-1.00)
Negative predictive value	0.85 (95% CI 0.75-0.93)	0.76 (95% CI 0.02-1.00)
Accuracy	0.86 (95% CI 0.79-0.92)	0.98 (95% CI 0.94-1.00)

Availability and Practicality of PSMA-PET for Men With Prostate Cancer

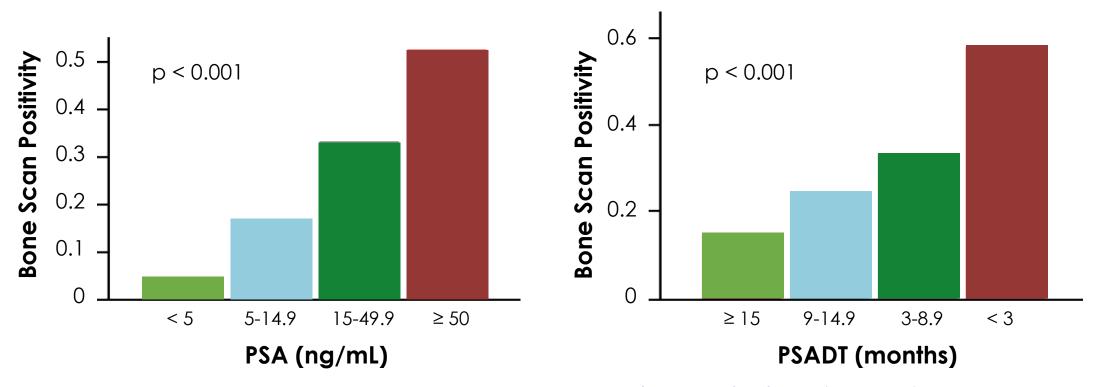
 PSMA-PET is still considered experimental and is not available in all centres/cities.

Discuss the availability of PSMA-PET in your region/centre and the logistics of obtaining PSMA-PET for your patients with prostate cancer



Importance of PSADT in identifying the high-risk patient

Relationship Between PSADT and Risk for Bone Metastasis or Death*


716 men from the placebo arm of Study 147 evaluating denosumab vs. placebo in men with nonmetastatic PCa at high risk for bone metastases

The shorter the PSADT, the greater the risk of bone metastases or death.

PSA and PSADT as Predictors of Metastasis in CRPC

Our Patient Brian

- December 2018
 - PSA nadired at 0.9 ng/mL
- April 2019
 - PSA 1.3 ng/mL
 - T < 0.7
- February 2020
 - PSA 5.3 ng/mL
 - T < 0.7

PSADT 5.0 months

Calculation of PSADT

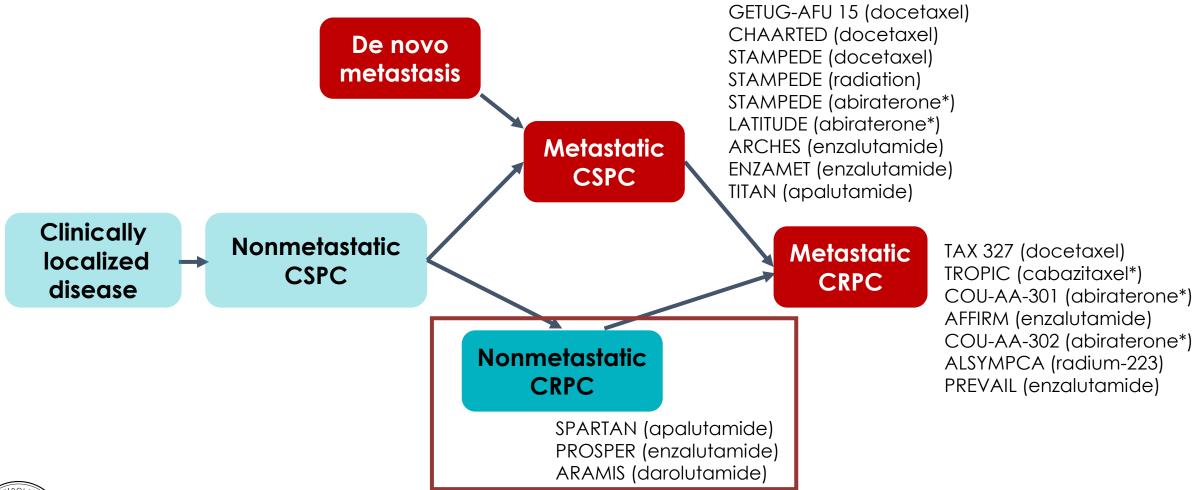
- Many EMRs have PSADT calculators
- Many online calculators are also available, e.g.:

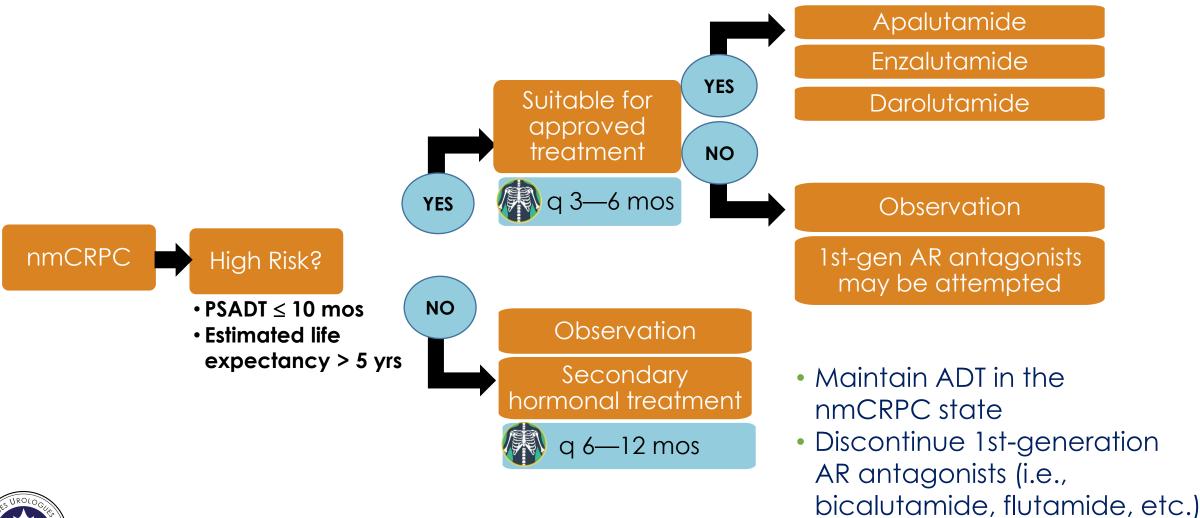
https://www.mskcc.org/nomograms/prostate/psa_doubling_time

- Ensure sufficient PSA results are collected to calculate PSADT
- Patients with more rapid PSADTs require more frequent PSA measures to ensure that opportunities for treatment are not missed

Treatment options for nmCRPC

Prostate Cancer Disease States and Key Phase III Trials

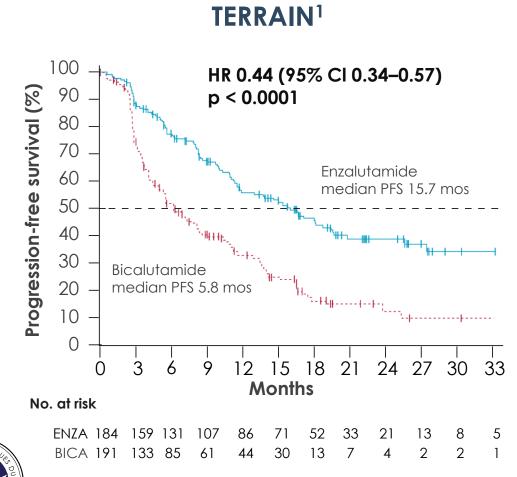


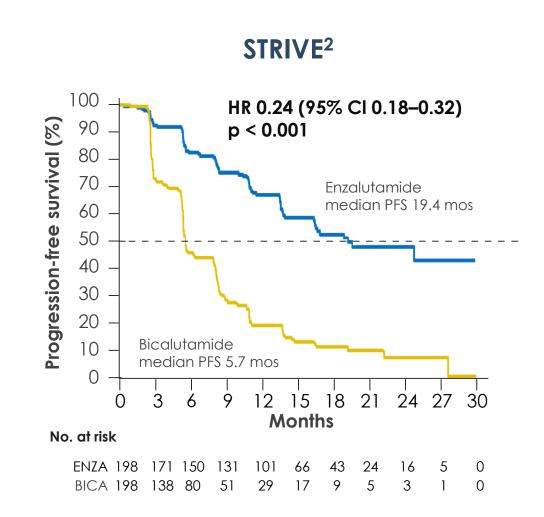

Figure adapted from Aggarwal RR, et al. Oncology (Williston Park) 2017;31:467-74;

Discussion Question

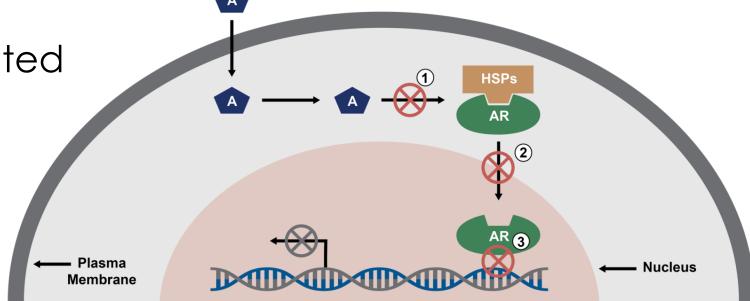
What are the potential treatment options for "Brian"?

Approach to nmCRPC – CUA 2021


Evolving Use of Bicalutamide in Prostate Cancer


- Short course (4 weeks) with initial dose of LHRH agonist to reduce impact of testosterone surge
- In combination with LHRH agonist or antagonist in metastatic PCa – Decreasing use
- In men undergoing finite LHRH treatment (e.g., 6-18 mos) often around radiation therapy or adjuvant and neoadjuvant trials
- In men with early progression toward CRPC without prior ARAT use

Bicalutamide vs. Enzalutamide in Patients with PCa Progressing on LHRH Agents



Enzalutamide, Apalutamide, and Darolutamide

 Inhibit binding of androgens (A) to androgen receptors (ARs)

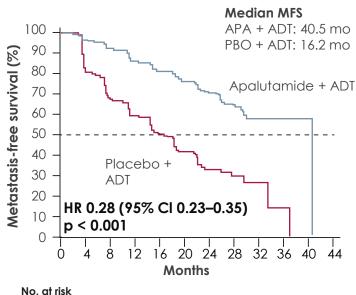
Inhibit nuclear translocation of ARs

 Inhibit AR-mediated DNA binding

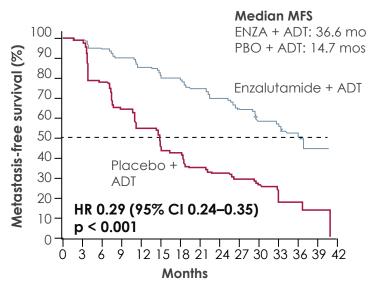
Overview of the nmCRPC Phase 3 Trials

	ARAMIS ¹	SPARTAN ²	PROSPER ³				
Intervention	Darolutamide vs. Placebo	Apalutamide vs. Placebo	Enzalutamide vs. Placebo				
Sample size	1,509	1,207	1,401				
Primary endpoint	MFS	(time to metastasis or c	leath)				
Eligibility criteria	nmCRPC with	h PSA > 2 ng/mL and PS	SADT ≤ 10 mos				
Neuro-condition exclusions	None	History of seizure or any condition that may predispose to seizure					

nmCRPC Phase 3 Trials: Baseline Characteristics

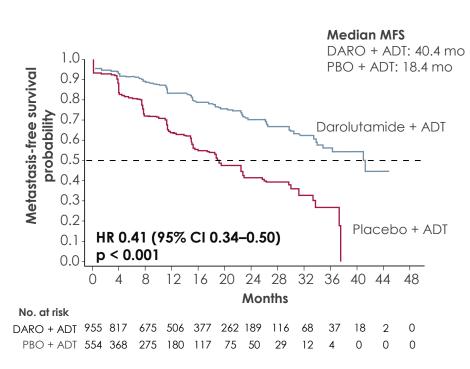

	ARAMIS (n = 1,509) ¹		SPARTAN (r	$1 = 1,207)^{2,3}$	PROSPER (n = 1,401)4	
Characteristic	DARO + ADT	PBO + ADT	APA + ADT	PBO + ADT	ENZA + ADT	PBO + ADT
Median age, years	74	74	74	74	74	73
ECOG PS, % 0 1	68 32	71 29	77 23	78 22	80 20	82 18
Median baseline PSA, ng/mL	9.0	9.7	7.78	7.96	11.1	10.2
Median PSADT*						
≤ 6 months	70%	67%	71.5%	70.8%	77%	77%
> 6 months	30%	33%	28.5%	29.2%	23%	23%
Median duration of treatment, mos	14.8	11.0	31.4	11.5	18.4	11.1

^{*}Median PSADT was ~4.5 months across the trials – well below the inclusion criterion of ≤ 10 months


nmCRPC Phase 3 Trials: Primary Endpoint – MFS

Apalutamide (SPARTAN)¹

No. cf risk APA + ADT 806 713 652 514 398 282 180 96 36 16 3 (PBO + ADT 401 291 220 153 91 58 34 13 5 1 0 (


Enzalutamide (PROSPER)²

No. at risk

ENZA + ADT 933 865 759 637 528 431 418 328 237 159 87 77 31 4 0 PBO + ADT 468 420 296 212 157 105 98 64 49 31 16 11 5 1 0

Darolutamide (ARAMIS)³

nmCRPC Phase 3 Trials: Secondary Endpoints

End Points (median)	ARAMIS (DARO vs. PBO) ^{1,2}	SPARTAN (APA vs. PBO) ³⁻⁵	PROSPER (ENZA vs. PBO) ⁶⁻⁸
	n = 1,508	n = 1,207	n = 1,401
OS	NR vs. NR	73.9 vs. 59.9 mos	67.0 vs. 56.3 mos
	(HR = 0.69; p = 0.003)	(HR = 0.784; p = 0.0161)	(HR = 0.73; p = 0.0011)
PFS	36.8 mos vs. 14.8 mos (HR = 0.38, p < 0.001)	40.5 mos vs. 14.7 mos (HR = 0.29; p < 0.001)	_
PFS2	_	55.6 vs. 43.8 mos (HR = 0.55; p < 0.0001)	_
Time to symptomatic progression*	40.3 mos vs. 25.4 mos	NR vs. NR	36.83 mos vs. NR
	(HR = 0.65, p < 0.001)	(HR = 0.45; p < 0.001)	(HR = 0.75; p = 0.028)
Time to PSA progression	33.2 mos vs. 7.3 mos	NR vs. 3.7 mos	37.2 mos vs. 3.9 mos
	(HR = 0.13, p < 0.001)	(HR = 0.06)	(HR = 0.07; p < 0.001)
Time to metastasis	_	40.5 mos vs. 16.6 mos (HR = 0.27; p < 0.001)	_
Time to 1st use of new agent	NR vs. NR (HR = 0.33, p < 0.001)	NR vs. NR (HR=0.60)† (cytotoxic chemotherapy)	39.6 mos vs. 17.7 mos (HR = 0.21; p < 0.001) (antineoplastic therapy)

*Secondary endpoint reported is time to pain progression; $^{\dagger}P$ value test not done due to OS not crossing O'Brien-Fleming efficacy boundary of 0.00008.

nmCRPC Trials: Safety Results

	ARAMIS (Daro vs PBO) ^{1,2}			PA vs PBO) ^{3,4}	PROSPER (ENZA vs PBO) ^{5,6}	
		des (%)		des (%)	All Grades (%)	
	Daro	PBO	APA	PBO	ENZA	PBO
AE leading to discontinuation	8.9	8.7	15	7.3	17	9
Hypertension	7.0	5.8	28	21	18	6
Rash	3.1	1.1	26	6.3	4	3
Fatigue	13.2	8.3	33	21	37	16
Asthenia	4.0	3.1	NR	NR	10	7
Fracture	5.5	3.6	18.0	7.5	18	6
Fall	5.2	4.9	22	9.5	18	5
Seizure	0.2	0.2	0.6	0	<1	0
Dizziness	4.5	4.0	9.3	6.3	12	6
Hypothyroidism	0.2	0	9.8	2.0	NR	NR
Mental and cognitive changes						
Cognitive/memory impairment	0.5	1.3	NR	NR	8	2
Mental impairment disorder	2.0	1.8	5.1	3.0	5	2

Management of Side Effects of AR-Targeted Therapies – **Fatigue**

Advise patients to:

- Be active and aim for 30 mins of moderate exercise/day
- Rest when needed
- Eat well and stay hydrated
- Avoid driving or using machinery when tired

Management of Side Effects of AR-Targeted Therapies – **Rash**

- Usually macular or maculopapular
- Onset: median of 82 days
- Resolves in ~60 days in most patients
- Rash recurred in ~1/2 of those re-challenged with apalutamide
- Protect from dry skin
 - Use skin moisturizer
 - Sun and cold protection
 - Sunscreen: UVA + UVB and SPF ≥ 30

Management of Side Effects of AR-Targeted Therapies – Mild Joint, Muscle Pain or Cramps

Advise patients to:

- Take pain medication as prescribed
- Take acetaminophen as needed
- Talk to doctor or pharmacist before taking ibuprofen, naproxen or aspirin (may increase bleeding risk)
- Rest often and try light exercise

Management of Side Effects of AR-Targeted Therapies – **Bone Health**

- Evaluate bone health and fracture risk prior to treatment and on a routine basis
 - DEXA screening
- Consider the use of bone-targeted agents
- Lifestyle modifications:
 - Recommendations for safe movement, adequate and safe exercise
 - Ensure adequate intake of protein, calcium, vitamin D
 - Caffeine and alcohol should be reduced

Management of Side Effects of AR-Targeted Therapies – **Hypothyroidism** (Apalutamide)

- Common symptoms:
 - Fatigue/sluggishness, cold intolerance, constipation, hair loss, weight gain
- Monitor TSH at baseline and as clinically indicated.
 - If abnormal:
 - Test for total T3, free T4, total T4
 - Refer to PCP for thyroid hormone supplementation

Dosage and Administration of the AR-Targeted Therapies

Apalutamide¹

- 240 mg (four 60mg tablets) taken orally, once daily
- Swallow tablets
 whole with a glass
 of water
- Can be taken with or without food

Enzalutamide²

- 160 mg (four 40 mg capsules)
 taken orally, once daily
- Swallow tablets whole with a glass of water
- Can be taken with or without food

Darolutamide³

- 600 mg (two 300 mg film-coated tablets) taken orally, twice daily
- Swallow tablets whole with food

Patients With Cancer Frequently Experience Comorbidities Requiring Multiple Medications

- Many patients with nmCRPC have comorbidities that require them to take multiple medications in addition to their cancer therapy:
 - Arthritis
 - Cardiac Disease
 - Depression
 - Diabetes
 - Dyslipidemia

- Hypothyroidism
- Hypertension
- Obesity
- Osteoporosis
- Osteopenia

Examples of Medications for Common Comorbidities in Patients With Cancer

Hypertension

- **Diltiazem** (CYP3A4 inhibitors)
- Carvedilol, verapamil (P-gp inhibitors)

Dyslipidemia

- Lovastatin, simvastatin (CYP3A4 substrates)
- Rosuvastatin (BCRP substrates)
- Gemfibrozil (CYP2C8 inhibitors)

Cardiac disease

- Clopidogrel (CYP2C8 inhibitors)
- Amiodarone, carvedilol, verapamil (P-gp inhibitors)
- Amiodarone, diltiazem (CYP3A4 inhibitors)
- Digoxin (P-gp substrates)

Potential Drug–Drug Interactions of AR-targeted Therapies

Drug category	Example ^{1,2}	Apalutamide Interactions ³	Enzalutamide Interactions ⁴	Darolutamide Interactions ⁵
ACEI/ARBs	Losartan	Χ	X	
Alpha _{1A} -adrenergic receptor antagonists	Tamsulosin, Silodosin, Alfuzosin, Doxazosin	X	X	
Analgesics	Fentanyl, Oxycodone	X	Χ	
Antibiotics	Clarithromycin, Rifampin	X	X	X* †
Antifungals	Itraconazole	X	X	X*
	Warfarin	X	X	
Antithrombotics	Clopidogrel	X	X	
Antithrombotics	Dabigatran	X	X	
	Apixaban, Rivaroxaban	Χ	X	
Beta-blockers	Bisoprolol	Χ	X	
PDE5 Inhibitors	Sildenafil, Tadalafil	X	X	

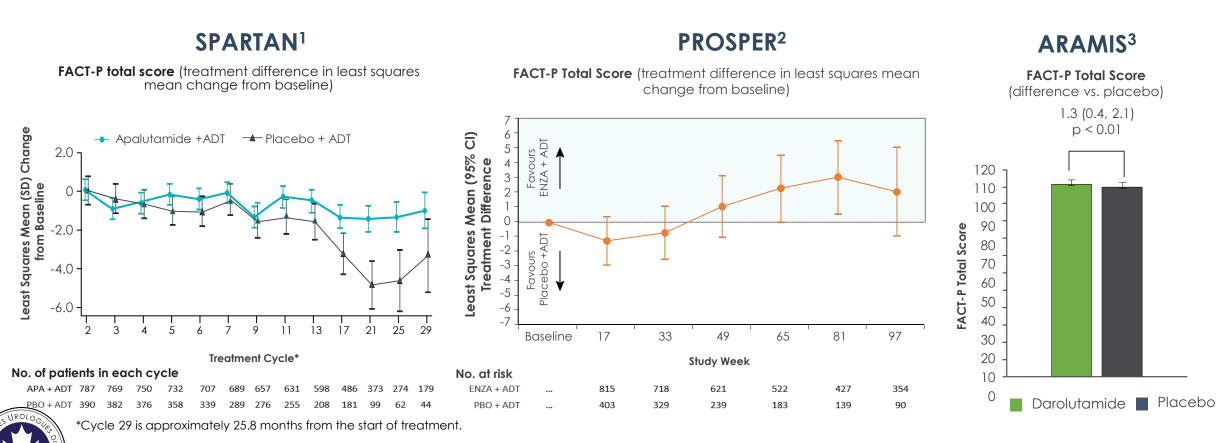
Potential Drug–Drug Interactions of AR-targeted Therapies (cont'd)

Drug category	Example ^{1,2}	Apalutamide Interactions ³	Enzalutamide Interactions ⁴	
Calcium channel blockers	Amlodipine, Nifedipine, Felodipine	Χ	Χ	
Calciori Charmer blockers	Diltiazem, Verapamil	Χ	Χ	
Cardiac glycosides	Digoxin	Χ	Χ	
Hypnotics	Alprazolam, Clonazepam, Diazepam	Χ	Χ	
Overactive Bladder	Darifenacin, Fesoterodine, Solifenacin, Tolterodine	X	X	
Proton pump inhibitors	Pantoprazole, Lansoprazole, Omeprazole	X	X	
Psychiatric modications	Citalopram, Escitalopram	Χ	X	
Psychiatric medications	Quetiapine, trazodone	Χ	Χ	
Station	Rosuvastatin	Χ		X*
Statins	Atorvastatin, simvastatin, lovastatin	Χ	X	

Potential Drug–Drug Interactions of AR-targeted Therapies (cont'd)

- A DDI tool for ARtargeted therapies can be requested from the CUA or accessed digitally at the CUA website:
- <u>cua.org/sites/default/files/</u>

 <u>Flipbooks/CPD/DDI/mobil</u>


 <u>e/index.html#p=2</u>

nmCRPC Trials – Health-related Quality of Life

- Men with nmCRPC generally have good QoL, and it is important to maintain that level of QoL
- In the nmCRPC AR inhibitor trials, HRQOL was maintained following treatment initiation

FACT-P = Functional Assessment of Cancer Therapy – Prostate Minimum clinically important difference, 10 points QoL = Quality of life

- I. Saad F, et al. Lancet Oncol 2018;19:1404-16
- 2. Tombal B, et al. Lancet Oncol 2019;20:556-9
 3. Fizazi K, et al. 2019;380:1235-46

 What quality-of-life considerations would you take into account when selecting a treatment for Brian?

• How would your management of Brian change if he were 52 years old with a PSADT of 11 months?

• How would your management of Brian change if he were 85 years old (PSADT 5 months)?

Provincial Support and Patient Assistance Programs [Province]

	Apalutamide	Darolutamide	Enzalutamide
Provincial coverage	X	X	X
Manufacturer Program name	 Janssen BioAdvance Patient Assistance Program 	 Bayer DART Patient Assistance Program 	 Astellas Xtandi Patient Assistance Program
Available assistance	 Compassionate supply may be available Financial assistance for patients with or without private insurance may be available 	 Compassionate supply may be available Financial assistance for patients with or without private insurance may be available 	 Compassionate supply may be available Financial assistance for patients with or without private insurance may be available
Contact	P: 1.844.511.2616 F: 1.855.629.7100 E: erleada@bioadvancemail.ca	P: 1.833.955.3278 F: 1.877.2084393 E: info@dartsupport.ca	P: 1.855.982.6348 F: 1.855.982.6349 E: Info@XTANDlassistanceprogram.ca

Appropriate follow-up of patients with nmCRPC

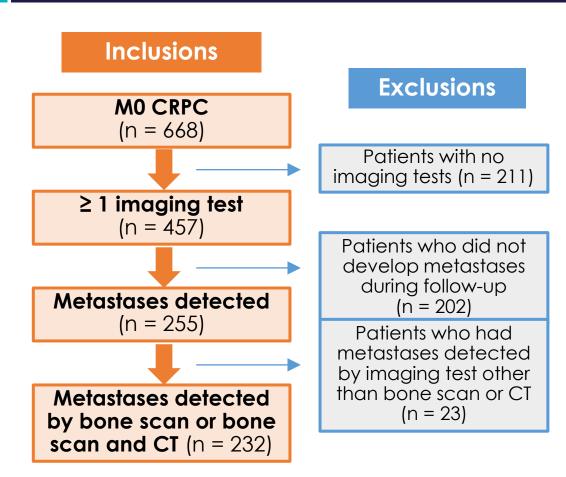
- How do you monitor your patients with nmCRPC?
- If our patient "Brian" has castrate levels of testosterone and his PSA is still responding – would you test for radiologic progression?

Guidelines for Follow-up of Patients With CRPC Undergoing Hormonal Treatment – EAU Guidelines

- Evaluate patients 3–6 mos after initiation of treatment
- Minimum tests:
 - Serum PSA
 - Physical exam
 - Serum testosterone
 - Careful evaluation of symptoms
- Useful prognostic tests: hemoglobin, ALP, LDH
- Adapt/individualize follow-up in cases of disease progression or non-response to treatment
- If progression is suspected, assess testosterone

Monitoring Considerations for Patients With nmCRPC on AR-Targeted Therapies – **Treatment-related Side Effects**

Clinical toxicity effects:


- Androgen withdrawal effects
- Fatigue
- Infection
- Active cardiac disease
- Seizures and other neuropsychiatric effects
- Dermatologic toxicity
- Fracture
- Falls
- Edema
- Diarrhea

Long-term side effects:

- BMD
- Cholesterol
- BP monitoring

Metastatic Sites at Conversion of M0 to M1 Disease in CRPC

Type of Imaging Test and Type of Metastasis

	Bone scan only, No.	CT ± Bone Scan, No. (%)
Soft-tissue metastases	-	36 (30)
Bone metastases	Unknowable	66 (56)
Both soft-tissue and bone metastases	Unknowable	16 (14)
Total	114	118

• Foregoing CT during a metastatic evaluation may lead to an underdiagnosis of soft-tissue metastases and an underdiagnosis of metastases in general.

Monitoring Considerations for Patients With nmCRPC on AR-Targeted Therapies – **Disease Progression**

- In addition to PSA, monitor radiographically
 - Distant metastasis without PSA progression occurred in the nmCRPC trials
 - > 40% of patients had bone or soft-tissue mets without "PSA Progression"
- Useful prognostic tests:
 - Hemoglobin
 - ALP
 - LDH
- Monitor symptoms at each visit

- What would you do if a patient had a rising PSA while on treatment and imaging (CT and bone scan) were negative?
- This patient should continue with treatment until there is evidence of clinical progression

Drug-Specific Monitoring Requirements for the AR-Targeted Therapies

Apalutamide¹

Monitor for laboratory or clinical parameters as per routine practice, PLUS

- TSH at baseline and as clinically indicated
- ECG at baseline and as clinically indicated for patients at risk for QTc prolongation
- INR for patients on warfarin, at baseline and at each visit

Enzalutamide²

Monitor for laboratory or clinical parameters as per routine practice, PLUS

- Blood pressure at baseline and at each visit
- ECG and electrolytes
 baseline and at each visit for patients at risk for electrolyte abnormality and QTc prolongation
- INR for patients on warfarin, at baseline and at each visit

Darolutamide³

Monitor for laboratory or clinical parameters as per routine practice

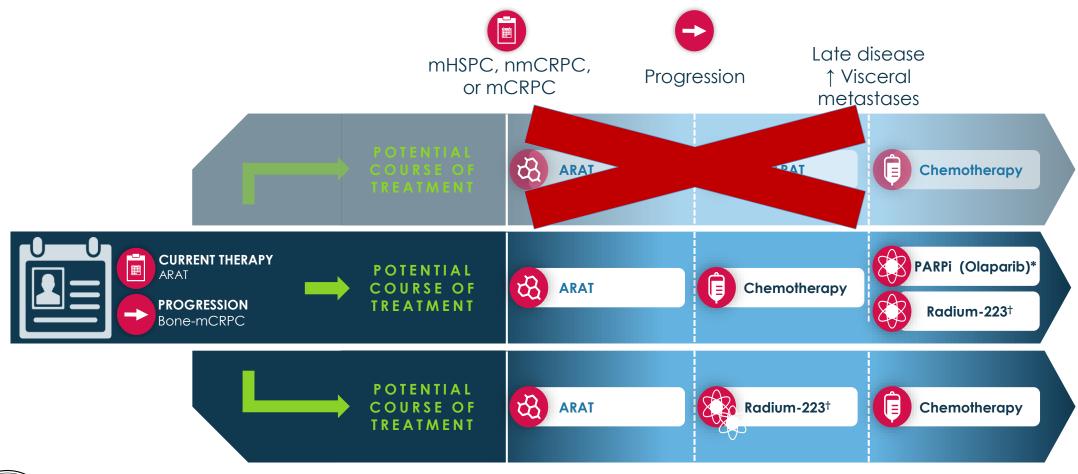
^{2.} XTANDI® Product Monograph, 2021

What to do when patients progress to mCRPC?

The New Reality in Systemic Therapy

HORMONE-SENSITIVE CASTRATION-RESISTANT ADT Non-metastatic Non-metastatic **Enzalutamide - PROSPER Apalutamide** - SPARTAN **Darolutamide - ARAMIS** Abiraterone + prednisone - LATITUDE **Docetaxel** - CHAARTED / STAMPEDE Metastatic Metastatic 图 Enzalutamide - ARCHES / ENZAMET Chemotherapy **Apalutamide** - TITAN Abiraterone + prednisone **Enzalutamide** Abiraterone + prednisone + docetaxel - PEACE-1 Radium-223 Note: all agents are used in combination with ADT **Olaparib**

¹⁷⁷Lu-PSMA-617*


Sequential Treatment with ARATs Associated with Limited Clinical Benefit in mCRPC – Randomized Trials

Study Treatment sequence	Median PFS (mos)	Median TTPP (mos)	≥ 50% PSA response	Median OS (months)				
PLATO ¹								
Enzalutamide -> Abiraterone + enzalutamide (n = 126) Enzalutar Given the lack of benefit shown in studies of switching								
Khalaf et c from one ARAT to another in mCRPC, would you								
expect a similar lack of benefit if the first ARAT were used in nmCRPC and the second in mCRPC?								
Docetaxel + ARAT* → ARAT* (n = 126)	3.7†	NR	13.5	11.6				
Docetaxel + ARAT* → Cabazitaxel (n = 129)	8.0†	NR	35.7	13.6				
PROFOUND ⁵								
ARAT* → ARAT* (n = 83)	3.55†	NR	NR	15.11‡				
ARAT* → Olaparib (n = 162)	7.39†	NR	NR	18.5				

*Physician choice of abiraterone + prednisone or enzalutamide; †rPFS; ‡Interim OS

Prostate Cancer Disease Progression: Potential Treatment Sequencing Options

Multidisciplinary Management of Men with nmCRPC

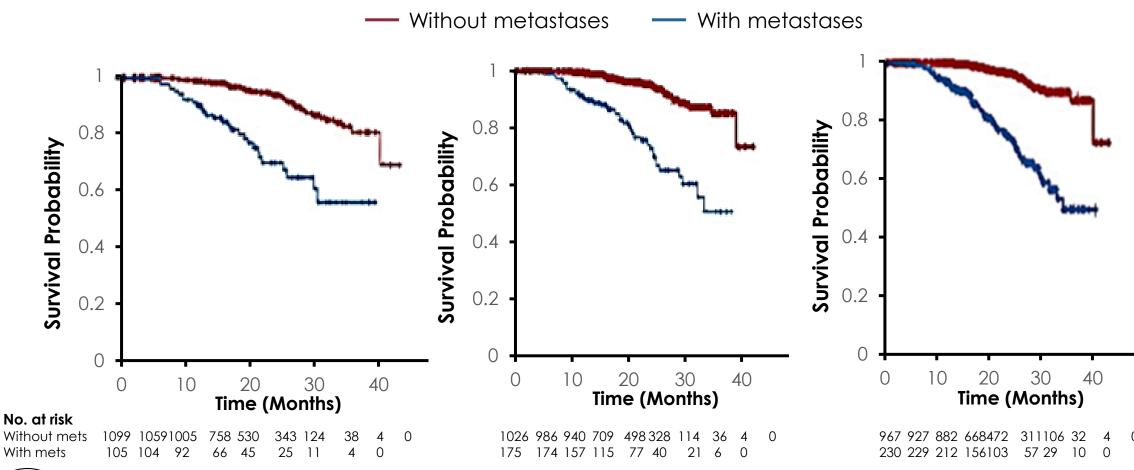
- At what point do you refer a patient with CRPC to the medical oncologist?
- What factors do you consider?
 - Symptoms?
 - **BSY** S
 - Imaging?

nmCRPC Conclusions

- Treatment of patients with high risk nmCRPC results in improved overall survival, despite high rate of active therapy in the placebo + ADT groups.
 - Patients do not "catch-up" if treatment is delayed

SECTION 3 SELF-ASSESSMENT PROGRAM IS ALSO AVAILABLE:

www.cua.org/uropedia



Backup Slides

Metastasis-free Survival as a Surrogate of Overall Survival in nmCRPC

Relationship Between PSADT and Risk for Bone Metastasis

Population	Intervention	Median time to BMFS (mos)	Median delay to BMFS (mos)	HR	р
All patients $(p - 1.420)$	Denosumab	29.5	4.2	0.85	0.028
All patients (n = 1,432)	Placebo	25.2	4.∠	0.65	0.020
PSADT					
< 10 mas / n = 1.554	Denosumab	28.4	6.0	8.4	0.042
\leq 10 mos (n = 1,554)	Placebo	22.4	0.0	0.4	0.042
< 4 mas / n = 9.14	Denosumab	25.9	7.2	0.77	0.006
≤ 6 mos (n = 846)	Placebo	18.7	1.2	0.77	0.006
< 4 mas / n = 550	Denosumab	25.8	7.5	0.71	0.004
≤ 4 mos (n = 552)	Placebo	18.3	7.5	0.71	0.004

Redefining Metastatic Risk in Recurrent Prostate Cancer

Study of castration-naïve PCa after radical prostatectomy

- 193 men
- Median PSA at bone scan conversion to metastatic disease was 31
- PSA at bone scans conversion (% patients)
 - < 10 = 25.8%
 - 10-100 = 50.8%
 - > 100 = 23.3%
- Risk factor for low PSA (< 10) at bone mets conversion
 - Low PSA at diagnosis
 - Higher Gleason score
 - Shorter time to metastasis

 Because metastasis may occur at a low PSA, patients with biochemical progression managed expectantly need regular bone scans even if PSA is low in order to detect metastasis before symptoms.

nmCRPC Phase 3 Trials: Inclusion Criteria

		ARAMIS ¹	-4	SPARTAN ^{5,6}			PROSPER ^{7,8}			
Intervention	Daro	olutamide vs	. Placebo	Apal	utamide vs. Plc	icebo	Enza	llutamide vs.	Placebo	
	mos) and use of osteoclast-targeted		(≤ 6 mos vs. > 0	2:1); stratified b 6 mos), use of c apy, and preser disease	steoclast-	(< 6 mos vs.	Randomized (2:1); stratified by PSADT (< 6 mos vs. ≥ 6 mo) and use of osteoclast-targeted therapy			
Accrual (targeted/actual)		1500/150)9		1200/1207			1560/140	1	
Dates	Start date	PCD	Final completion	Start date	PCD	Final completion	Start date	PCD	Final completion	
	Sep 2014	Sep 2018	Jun 2020	Oct 2013	May 2017	Nov 2021	Oct 2013	Jun 2017	May 2020	
Primary endpoints	MFS, time to metastasis or death									
Secondary endpoints	OS, time to pain progression, time to use of CT, time to first SSE, safety		Time to metastasis, PFS, time to symptomatic progression, OS, time to use of CT, PFS, safety, PK		Time to PSA progression, time to first use of new antineoplastic therapy, OS, time to first use of CT, HRQoL, time to CT-free disease specific survival, time to CT-free survival, time to pain progression, safety, PSA response rate					
Additional endpoints	PFS, time to first PC-related invasive procedure, initiation of subsequent antineoplastic therapy, PSA progression, PSA response, ECOG status, and HRQoL		Time to PSA progression, PSA response rate, HRQoL, PFS2		NA					
HRQoL	FACT-P, EORTC-QLQ-PR25, EQ-5D-3L		FACT-P and EQ-5D		FACT-P, EQ-5D-5L and QLQ-PR25		LQ-PR25			
Neuro-condition exclusions	None			History of seizure or any condition			that may predispose to seizure			
Eligibility criteria					nmCRPC with PSADT ≤ 10 mo					
Lingibility Citiend	scre	ening PSA ≥	: 2 ng/mL	scre	ening PSA > 2 n	ıg/mL	screening PSA ≥ 2 ng/mL			

nmCRPC Trials: Safety Meta-analysis

Advorce event (AE)		Safety Ranking				Odds Ratio			
Adverse event (AE)	Rank 1	Rank 2	Rank 3	Rank 4	APA vs. ENZA	DARO vs. ENZA	APA vs. DARO		
Serious AEs	PBO	APA	DARO	ENZ	0.76	0.92	0.83		
Falls, severe*	PBO	DARO	ENZA	APA	0.86	0.58	0.50		
Fatigue (all grades)*	PBO	DARO	APA	ENZA	0.61	0.59	0.97		
Fatigue, severe*	DARO	PBO	APA	ENZA	0.76	0.10	0.13		
Hypertension*	PBO	DARO	APA	ENZA	0.53	0.51	0.96		
Mental impairment*	DARO	PBO	APA	ENZA	0.63	0.15	0.24		
Nausea	DARO	PBO	APA	ENZA	0.86	0.63	0.74		
Diarrhea	PBO	ENZA	DARO	APA	0.71	0.81	0.87		
Rash	PBO	DARO	APA	/	/	/	0.62		
Seizure	PBO	DARO	APA	ENZA	0.71	0.33	0.47		
Fractures	PBO	DARO	APA	/	/	/	0.62		

