UROpedia® CUA-CUOG GUIDELINE

2025 Canadian Urological Association-Canadian Uro-oncology Group Guideline: Metastatic castration-resistant prostate cancer (Update)

Fred Saad¹, Alan I. So², Armen Aprikian³, Antonio Finelli⁴, Neil E. Fleshner⁴, Martin E. Gleave², Zineb Hamilou⁵, Tamim Niazi⁶, Scott A. North⁷, Frédéric Pouliot⁸, Ricardo A. Rendon⁹, Bobby Shayegan¹⁰, Srikala S. Sridhar¹¹, Nawaid Usmani¹², Eric Vigneault¹³, Kim N. Chi¹⁴

¹Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada; ²Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada; ³Division of Urology, McGill University Health Centre, Montreal, QC, Canada; ⁴Division of Urology, University of Toronto, Toronto, ON, Canada; ⁵Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada; ⁶lewish General Hospital, Montreal, QC, Canada; ⁷Department of Medical Oncology, University of Alberta, Edmonton, AB, Canada; ⁸CHU de Quebec, Université Laval, Quebec City, QC, Canada; ⁹Department of Urology, Dalhousie University, Halifax, NS, Canada; ¹⁰Division of Urology, Department of Surgery and Oncology, McMaster University, Hamilton, ON, Canada; ¹¹Division of Medical Oncology, University of Toronto, Toronto, ON, Canada; ¹²Department of Oncology, Division of Radiation Oncology, University of Alberta, Edmonton, AB, Canada; ¹³Department of Radiation Oncology, CHU de Quebec, Université Laval, Quebec City, QC, Canada; ¹⁴BC Cancer Agency, Vancouver, BC, Canada

Cite as: Saad F, So AI, Aprikian A, et al. 2025 Canadian Urological Association-Canadian Urooncology Group Guideline: Metastatic castration-resistant prostate cancer (Update). *Can Urol Assoc J* 2025;19(8):E276-89. http://dx.doi.org/10.5489/cuaj.9341

INTRODUCTION

Castration-resistant prostate cancer (CRPC) is defined by disease progression despite castrate levels of testosterone, and may present as either a continuous rise in serum prostate-specific antigen (PSA) levels, the progression of pre-existing disease, and/or the appearance of new metastases.

Advanced prostate cancer has been known by a few names over the years, including hormone-resistant prostate cancer (HRPC) and androgen-insensitive prostate cancer (AIPC). Most recently, the terms castration-resistant prostate cancer or castration-recurrent prostate cancer were introduced with the realization that extratesticular androgen production plays a significant role in the resistance of prostate cancer cells to medical or surgical castration therapy.¹

The Prostate Cancer Working Group defined CRPC as a continuum on the basis of whether metastases are detectable (clinically or by imaging) and whether the serum testosterone is in the castrate range by surgical orchidectomy or medical therapy.² This definition creates a clinical-states model, where patients can be classified. The rising PSA states (castrate and non-castrate) signify that no detectable (measurable or non-measurable) disease has ever been found. The clinical metastases states (castrate and non-castrate) signify that disease was detectable at some point in the past, regardless of whether it is detectable now.³

Prognosis is associated with several factors that go beyond PSA levels. These include performance status, presence of visceral metastases, presence of bone pain, extent of disease on bone scan, and serum lactate dehydrogenase and alkaline phosphatase levels. Bone metastases will occur in 90% of men with CRPC and can produce significant morbidity, including pain, pathological fractures, spinal cord compression, and bone marrow failure. Paraneoplastic effects, including anemia, weight loss, fatigue, hypercoagulability, and increased susceptibility to infection, are also common.

CRPC includes patients without metastases or symptoms with rising PSA levels despite androgen deprivation therapy (ADT) to patients with metastases and significant debilitation due to cancer symptoms.

Importantly, genetic testing may inform and optimize treatment selection for patients with metastatic (m) CRPC and should be performed in all patients with CRPC, if not done previously. Please refer to the CUA guideline on genetic testing for more details.

METHODOLOGY

A MEDLINE search of the English language and conference proceedings was used to produce the present

Moving forward, the CUA will be employing GRADE methodology for all of its major guidelines. Until we shift exclusively to this model, guidelines will be updated using the methodology in which they were originally created, and in this particular document, recommendations have been assigned a level of evidence based on the WHO-modified Oxford Center for Evidence-Based Medicine grading system and expert opinion. Because this was a minor update, it did not undergo further external review. document. Wherever level I evidence is lacking, the guideline attempts to provide expert opinion to aid in the management of patients. Levels of evidence and grades of recommendation employ the International Consultation on Urologic Disease (ICUD)/ WHO modified Oxford Center for Evidence-Based Medicine grading system.⁴ Based on a modified GRADE methodology, the strength of each recommendation is represented by the words STRONG or WEAK.⁴

MANAGEMENT OF CRPC

ADT and first-generation androgen receptor antagonists

■ RECOMMENDATION I

Because the androgen receptor remains active in most patients who have developed castration-resistant disease, it is recommended that ADT be continued for the remainder of a patient's life (Level of evidence 3, Strong recommendation).

RECOMMENDATION 2

In patients who develop CRPC, the addition or change of first-generation androgen receptor antagonists may be considered (Level of evidence 3, Weak recommendation).

To date, no study using first-generation androgen receptor antagonists, when introduced in the CRPC setting, has shown survival benefits; most trials have been small, were not designed to evaluate overall survival (OS), and were heavily confounded by future treatments used. In patients treated with luteinizing hormone-releasing hormone (LHRH) agonist/antagonist monotherapy or those who have had an orchidectomy, the addition of androgen receptor antagonists, such as bicalutamide, can offer modest PSA responses that are short-lived in 30–35% of patients.⁵

For patients who have undergone total androgen blockade (TAB), the anti-androgen (AA) should be discontinued to test for an anti-androgen withdrawal response (AAWD). Changing AA or using corticosteroids with or without ketoconazole has been noted to cause transient PSA reductions in about 30% of patients, but has not been shown to improve any of the clinically meaningful outcome measures. Detection of metastases and imaging in untreated patients

For patients who progress on ADT without evidence of distant metastases, it is suggested to screen for bone metastases with bone scans and monitor for lymph node and visceral metastases/progression with imaging of the abdomen/pelvis and chest.

RECOMMENDATION 3

Patients with a rapid PSA doubling time (PSADT) (<10 months) or elevated PSA levels (>20) are at high risk for developing metastases earlier.³ Imaging in these patients should be performed every 3–6 months. Patients with a slower PSADT (>10 months) should be screened every 6–12 months (*Expert opinion*).

The imaging techniques most commonly used include nuclear bone scans and abdominal/pelvic computed tomography (CT) and chest X-ray. The role of positron-emission tomography (PET), such as prostate-specific membrane antigen (PSMA)-PET are still unclear and the benefits unknown.

When metastases are detected, patients should be treated according to guidelines for mCRPC. How patients are treated in the mCRPC state will depend on what they received prior to becoming mCRPC.

Non-metastatic CRPC (nmCRPC)

RECOMMENDATION 4

Men with high-risk nmCRPC, defined as a PSADT <10 months, with an estimated life expectancy of >5 years should be offered apalutamide, enzalutamide, or darolutamide (Level of evidence 1, Strong recommendation).

Until 2018, there was no standard of care and no approved regimen for the nmCRPC state. The risk of progression to clinical metastases or death is linked to PSADT. PSADT <10 months has been correlated with worse outcomes and has been used in recent clinical trials as the definition for high-risk nmCRPC. Patients in these studies were randomized to treatment plus ADT vs. placebo plus ADT until the appearance of metastases on conventional imaging (bone scan and CT/magnetic resonance imaging [MRI] of the abdomen/chest).

The three studies used new-generation androgen receptor pathway inhibitors (ARPI) (apalutamide, enzalutamide, and darolutamide) and reported similar results in significantly improving the primary endpoint

Guideline statements regarding nmCRPC

- ADT should be maintained in the nmCRPC state. Firstgeneration androgen receptor antagonists (i.e., bicalutamide, flutamide, etc.) should be discontinued if patients are receiving these agents (Level of evidence 3, Strong recommendation).
- Men with high-risk nmCRPC, defined as a PSADT <10 months, with an estimated life expectancy of >5 years should be offered apalutamide, enzalutamide, or darolutamide (Level of evidence 1, Strong recommendation).
- In men with high-risk nmCRPC who are felt to be unsuitable or refuse approved therapies, observation or use of first-generation androgen receptor antagonists may be attempted (Level of evidence 3, Weak recommendation).
- For men with nmCRPC who are not considered high-risk, observation or secondary hormonal treatments may be attempted (Level of evidence 3, Weak recommendation).
- Patients who are untreated for nmCRPC should be followed with regular imaging every 6–12 months depending on PSADT (Level of evidence 3, Weak recommendation).

of metastases-free survival (MFS). At the first report of results for the three trials, median OS, a secondary endpoint, was not reached; however, at interim analysis, there was a non-significant improvement in OS for men receiving the ARPI.⁶⁻⁸

At final analysis, the three agents demonstrated statistically significant improvements in OS. The phase 3 studies have led to Health Canada approvals of apalutamide, enzalutamide, and darolutamide for the treatment of high-risk nmCRPC.

SUMMARY OF RESULTS

Apalutamide

Apalutamide is a second-generation ARPI. This agent was tested in combination with standard ADT in patients with nmCRPC at high risk for progression (PSADT ≤ 10 months).⁶ The median MFS was 40.5 months with apalutamide and 16.2 months with placebo (hazard ratio [HR] for metastasis or death 0.28, 95% confidence interval [CI] 0.23–0.35, p<0.001). Secondary endpoints analyzed, including progressionfree survival (PFS) (local and distant), time to PSA progression, and time to subsequent therapy, were all statistically significantly improved.⁶ Although more adverse events were reported in patients receiving ADT plus apalutamide vs. ADT plus placebo, patient-reported health-related quality of life (HRQoL) was similar between both groups.⁹

At final survival analysis, median followup time was 52.0 months. Median treatment duration was 32.9 months for apalutamide and 11.5 months for the placebo group. Median OS was significantly longer with apalutamide plus ADT compared to placebo plus ADT (73.9 months vs. 59.9 months, respectively; HR 0.784, p=0.0161) The trial regimen was discontinued in 42.7% of the treatment group and 73.9% of the placebo group due to progressive disease, and 15.2% vs. 8.4%, respectively, due to adverse events. The survival benefit was observed even though more than 85% of the patients in the placebo group received subsequent treatment. The SPARTAN trial concluded that apalutamide reduced the risk of metastasis or death, and the MFS and OS benefits were consistent across all subgroups, including all age groups, local or regional nodal disease, and those with shorter or longer PSADT.¹⁰

Enzalutamide

Enzalutamide is a second-generation ARPI. This agent was tested in combination with standard ADT in patients with nmCRPC at high risk for progression (PSADT ≤ 10 months).⁸ The median MFS was 36.6 months with enzalutamide and 14.7 months with placebo (HR for metastasis or death 0.29, 95% Cl 0.24– 0.35, p<0.001). Secondary endpoints analyzed, including PFS (local and distant), time to PSA progression, and time to subsequent therapy, were all statistically significantly improved. Although more adverse events were reported in patients receiving ADT plus enzalutamide vs. ADT plus placebo, patient-reported HRQoL was similar between both groups.¹¹

At final analysis, median followup was 48 months. At the time of cutoff, 31% of patients in the enzalutamide cohort and 38% of patients within the placebo group had died. In the enzalutamide cohort, 19% of deaths were from prostate cancer and 12% were not from prostate cancer. In the placebo group, 29% were from prostate cancer and 9% were not from prostate cancer. Median OS was 67 months (95% Cl 64–not reached) in the enzalutamide group and 56.3 months (95% Cl 54.4–63.0) in the placebo group. Enzalutamide plus ADT was associated with a 27% lower risk of death than placebo plus ADT (HR 0.73, 95% Cl 0.61–0.89, p=0.001).¹²

Darolutamide

Darolutamide is a second-generation ARPI. This agent was tested in combination with standard ADT in patients with nmCRPC at high risk for progression (PSADT ≤ 10 months).⁸ The median MFS was 40.4 months with darolutamide and 18.4 months with placebo (HR for metastasis or death 0.41, 95% CI 0.34–0.50, p<0.001). Secondary endpoints analyzed, including PFS (local and distant), time to PSA progression, and time to subsequent therapy, were all statistically significantly improved.⁷ Although more adverse events were reported in patients receiving ADT plus darolutamide vs. ADT plus placebo, patient-reported HRQoL was similar between both groups.⁷

Final analysis was conducted after 254 deaths were observed (15.5% of darolutamide group and 19.1% of placebo control group). Darolutamide had a statistically significant 31% reduction in the risk of death. After a median followup time of 29 months, the median survival rate at three years was 83% in the darolutamide cohort and 77% in the placebo group (HR 0.69, 95% CI 0.53–0.88, p=0.003). The survival benefit was observed even though more than half of the patients in the placebo group received subsequent darolutamide treatment.¹³

Treatment of mCRPC

Since mCRPC is generally associated with a high risk of morbidity and cancer-related mortality, patients with mCRPC detected on conventional imaging should be considered for systemic therapy with demonstrated survival benefits. Patients with mCRPC should optimally receive multidisciplinary care to maximize survival and quality of life. Because any treatment for advanced disease remains non-curative, patients with advanced prostate cancer should be encouraged to participate in clinical trials.

I. ANDROGEN RECEPTOR PATHWAY INHIBITORS

In men with CRPC, phase 3 clinical trials have evaluated the role of abiraterone acetate and enzalutamide in both the chemo-naive and post-chemotherapy settings.

Abiraterone acetate

Abiraterone acetate is a potent and irreversible inhibitor of CYP-17, a critical enzyme in androgen biosynthesis.

■ RECOMMENDATION 5

In the chemo-naive setting: Abiraterone acetate 1000 mg/day plus prednisone 5 mg twice daily is recommended for first-line therapy mCRPC (Level of evidence 1, Strong recommendation).

In asymptomatic or minimally symptomatic patients (defined as pain that is relieved by acetaminophen or a non-steroidal anti-inflammatory) without visceral metastases, abiraterone acetate significantly improved radiographic PFS (rPFS) (16.5 vs. 8.3 months) (HR 0.53, 95% CI 0.45–0.62, p<0.001) and had a statistically significant 4.4-month improvement in OS (HR 0.81, p=0.0033).^{14,15} Abiraterone also significantly delayed time to pain progression, time to chemotherapy initiation, time to opiate initiation, and deterioration of the Eastern Cooperative Oncology Group (ECOG) performance status.

■ RECOMMENDATION 6

In the post-docetaxel setting: Abiraterone acetate 1000 mg per day plus prednisone 5 mg twice daily is recommended in patients progressing on or after docetaxel-based chemotherapy (Level of evidence 1, Strong recommendation).

In the post-docetaxel setting, abiraterone-prednisone compared to placebo-prednisone significantly prolonged median OS by 4.6 months (15.8 vs. 11.2 months; HR 0.74, p=0.0001) in patients with mCRPC who had progressed after docetaxel treatment. Moreover, all secondary endpoints provided support for the superiority of abiraterone over placebo: median time to PSA progression (8.5 vs. 6.6 months; HR 0.63, p<0.0001), rPFS (5.6 vs. 3.6 months; HR 0.66, p<0.0001), confirmed PSA response rate defined as \geq 50% reduction in PSA from the pre-treatment baseline PSA (29% vs. 5.5%; p<0.0001), and objective response by Response Evaluation Criteria in Solid Tumors (RECIST) (14.8% vs. 3.3%; p<0.0001).¹⁶

Enzalutamide

Enzalutamide is a potent multitargeted androgen signalling pathway inhibitor.

RECOMMENDATION 7

In the chemo-naive setting: Enzalutamide 160 mg per day is recommended as first-line therapy for mCRPC (Level of evidence 1, Strong recommendation).

In asymptomatic or minimally symptomatic patients (defined as pain that is relieved by acetaminophen or a non-steroidal anti-inflammatory), enzalutamide decreased the risk of radiographic progression or death by 81% (HR 0.19, 95% Cl 0.15–0.23, p<0.001) and the risk of death by 29% (HR 0.71, 95% Cl 0.60–0.84, p<0.001) as compared to placebo. The benefit

of enzalutamide was demonstrated for all secondary endpoints, including time to initiation of cytotoxic chemotherapy, time to first skeletal-related event (SRE), best overall soft tissue response (59% vs. 5%; p<0.001), time to PSA progression (HR 0.17, p<0.001), and \geq 50% PSA decline rate (78% vs. 4%; p<0.001). Enzalutamide also significantly delayed time to pain progression, time to opiate initiation, and deterioration of the ECOG performance status.^{17,18}

RECOMMENDATION 8

In the post-docetaxel setting: Enzalutamide 160 mg per day is recommended in patients progressing on or after docetaxel-based chemotherapy (Level of evidence 1, Strong recommendation).

In patients previously treated with docetaxel, the trial compared enzalutamide and placebo. The study demonstrated a significant advantage in OS of 4.8 months (18.4 vs. 13.6 months; HR 0.62, p<0.0001) and in all secondary endpoints, including confirmed PSA response rate (54% vs. 2%; p<0.001), soft-tissue response rate (29% vs. 4%; p<0.001), time to PSA progression (8.3 vs. 3.0 months; HR 0.25, p<0.001), rPFS (8.3 vs. 2.9 months; HR 0.40, p<0.001), and the time to the first SRE (16.7 vs. 13.3 months; HR 0.69, p<0.001).¹⁹

NOTE: The studies in the chemo-naive setting did not include patients with moderate or severe symptoms; however, abiraterone and enzalutamide may be potential therapeutic options in these patients (*Expert opinion*).

II. CHEMOTHERAPY

First-line systemic chemotherapy

Docetaxel

■ RECOMMENDATION 9

Docetaxel 75 mg/m² intravenous (IV) every three weeks with 5 mg oral prednisone twice daily is recommended for patients with mCRPC (Level of evidence 1, Strong recommendation).

The TAX-327 study randomized 1006 patients to one of three treatment arms: 1) docetaxel 75 mg/m² IV every three weeks; 2) docetaxel 30 mg/m² weekly for five of six weeks; or 3) control therapy with mito-xantrone.²⁰ The study reported improved survival with docetaxel (every three weeks) compared with mitoxantrone-prednisone (median survival 18.9 vs.

16.5 months; HR 0.76, 95% Cl 0.62–0.94, two-sided p=0.009). No OS benefit was observed with docetaxel given on a weekly schedule (HR 0.91, 95% Cl 0.75–1.11, two-sided p=0.36). Significantly, more patients treated with docetaxel (every three weeks) achieved a pain response compared with patients receiving mito-xantrone (35% vs. 22%; p=0.01).

Quality of life response, defined as a sustained 16-point or greater improvement from baseline on two consecutive measurements, was higher with docetaxel given every three weeks (22% vs. 13%; p=0.009) or weekly (23% vs. 13%; p=0.005) compared with mitoxantrone. PSA response rates were also statistically significantly higher with docetaxel compared to mitoxantrone.²⁰Although patients received up to 10 cycles of treatment if no progression and no prohibitive toxicities were noted, the duration of therapy should be based on the assessment of benefit and toxicities. Rising PSA alone should **not** be used as the sole criteria for progression; assessment of response should incorporate clinical and radiographic criteria.

RECOMMENDATION 10

Alternative therapies that have not demonstrated improvement in OS but can provide disease control, palliation, and improve quality of life include weekly docetaxel plus prednisone, and mitoxantrone plus prednisone (Level of evidence 2, Weak recommendation).

■ RECOMMENDATION 11

The timing of docetaxel therapy in men with evidence of metastases but without symptoms should be discussed with patients, and therapy should be individualized based on patients' clinical status and preferences (Level of evidence 3, Weak recommendation).

■ RECOMMENDATION 12

Patients who do not respond to first-line ADT or who progress clinically or radiologically without significant PSA elevations may have neuroendocrine differentiation. Biopsy of accessible lesions should be considered to identify these patients; these patients may be treated with combination chemotherapy, such as cisplatin/etoposide or carboplatin/etoposide (Level of evidence 3, Weak recommendation).

Second-line systemic chemotherapy

Cabazitaxel

RECOMMENDATION 13

Cabazitaxel is recommended for mCRPC patients progressing on or following docetaxel (Level 1, Strong recommendation).

A phase 3 study comparing cabazitaxel to mitoxantrone in patients previously treated with docetaxel has shown a statistically significant survival advantage.²¹ This randomized, placebo-controlled trial recruited 755 docetaxel-pretreated CRPC patients. OS was the primary endpoint of the study. Patients were randomized to receive prednisone 10 mg/day with three times weekly mitoxantrone 12 mg/m² or cabazitaxel 25 mg/m². An advantage in survival emerged in favor of the cabazitaxel group, with a median survival of 15.1 months compared with 12.7 months in the mitoxantrone group (HR 0.70, 95% CI 0.59, 0.83, p<0.0001).²¹

A phase 3 study comparing cabazitaxel 25 mg/m² vs. 20 mg/m² resulted in non-inferiority for cabazitaxel 20 mg/m² with less adverse events. Of note, in the subgroup analysis of patients who had received both docetaxel and abiraterone/enzalutamide, results appeared to favor a higher dose of cabazitaxel.²²

Other options

RECOMMENDATION 14

For patients who have had a good response to firstline docetaxel, re-treatment with docetaxel can be considered (*Expert opinion*, *Weak recommendation*).²³

■ RECOMMENDATION 15

Mitoxantrone has not shown any survival advantage but may provide symptomatic relief. Mitoxantrone may be considered a therapeutic option in symptomatic patients with mCRPC in the first- or second-line setting (Expert opinion, Weak recommendation).

III. RADIOLIGAND THERAPY

Radium-223

■ RECOMMENDATION 16

Radium-223 is recommended in patients with bone symptomatic mCRPC who have progressed following taxane chemotherapy or are unfit for/refuse chemotherapy and who do not have visceral metastases (Level of evidence 1, Strong recommendation).

Radium-223 (previously known as alpharadin) is an intravenous alpha-emitting agent that mimics calcium, preferentially targeting bone metastases. In a randomized, phase 3 study, radium-223 given every four weeks for six cycles was compared to placebo.²⁴ Radium-223 demonstrated a significant improvement in OS and symptomatic SREs. OS was improved by 3.6 months (HR 0.7, p<0.0001) and symptomatic SREs were delayed by 5.8 months (p<0.0001). The study included patients with symptomatic bone metastases who were post-docetaxel or ineligible for docetaxel.²⁵ The study excluded patients with visceral metastases or lymph node metastases >3 cm.

PSA measurements while receiving radium-223 cannot provide evidence of whether patients are benefitting or not. Given the mechanism of action of the drug, alkaline phosphatase appears to be better marker of activity. A phase 3 study in the first-line mCRPC setting compared radium-223 in combination with abiraterone/prednisone vs. abiraterone/prednisone alone and demonstrated no advantage and an increased risk of fractures.²⁶

RECOMMENDATION 17

Radium-223 should not be combined with abiraterone. (Level of evidence 1, Strong recommendation).

■ RECOMMENDATION 18

A bone-supportive agent (denosumab or zoledronic acid) should always be used when using radium-223 (Level of evidence 1, Strong recommendation).

¹⁷⁷Lu-PSMA-617 (¹⁷⁷Lu vipivotide tetraxetan)

■ RECOMMENDATION 19

¹⁷⁷Lu-PSMA-617 (¹⁷⁷Lu vipivotide tetraxetan) for up to six cycles is recommended in patients with mCRPC and PSMA-expressing metastatic lesions who have progressed on at least one previous taxane chemotherapy and an ARPI (Level 1, Strong recommendation).

In the majority of patients with mCRPC, metastatic lesions are PSMA-avid. ¹⁷⁷Lu-PSMA-617 delivers betaparticle radiation selectively to PSMA-positive cells and the surrounding microenvironment.

TheraP study, a randomized, phase 2 trial, included patients with mCRPC with disease progression on docetaxel for whom cabazitaxel was the next line of drug. The patients were randomized to cabazitaxel or ¹⁷⁷Lu -PSMA-617. Planar imaging and single photon emission CT were performed to evaluate dose distribution in the target and adjacent structures. Significantly higher proportion of patients (66% vs. 37%) in the ¹⁷⁷Lu-PSMA-617 arm had at least 50% reduction in PSA from baseline. Grade 3–4 adverse events were noted in 33% vs. 53% of patients in the radiopharmaceutical and cabazitaxel arm, respectively. Grade 3–4 adverse events occurred less frequently in the ¹⁷⁷Lu -PSMA-617 treatment group (33% of men vs. 53% of men in the cabazitaxel group).²⁷

In an international, phase 3, randomized controlled trial (VISION), men with PSMA- positive mCRPC, previously treated with at least one ARPI and one or two taxane regimens, were randomly assigned in a 2:1 ratio to either ¹⁷⁷Lu-PSMA-617 for up to six cycles plus protocol-permitted standard-of-care (SoC) vs. SoC therapy alone. Relative to SoC alone, ¹⁷⁷Lu-PSMA-617 plus SoC was associated with the following clinical benefits: median OS was prolonged by four months (15.3 vs. 11.3 months with SoC alone) and the risk of death was decreased by 38% (HR 0.62, 95% CI 0.52-0.74, p<0.001). Radiographic PFS was prolonged by 5.3 months (8.7 vs. 3.4 months) and the risk of disease progression was decreased by 60% (HR 0.40, 99.2% CI 0.29–0.57, p<0.001). Median time to first symptomatic skeletal event (SSE) or death was prolonged by 4.7 months and the risk of first SSE or death decreased by 50% (HR 0.50, 95% CI 0.40-0.62, p<0.001).

Deterioration of HRQoL was delayed, as measured by Functional Assessment of Cancer Therapy-Prostate (FACT-P), Brief Pain Inventory Short-Form (BPI-SF) (worst pain intensity), and EQ-5D-5L score deterioration at 3.5, 3.0, and 0.5 months, respectively. Standard-of-care regimen included standard ADT, bisphosphonates, ARPIs, denosumab, testosterone 5 α reductase inhibitors, glucocorticoids, and estrogen. The treatment effect was consistent across all subgroups. Myelosuppression was noted in 47.4% (grade 3–5 in 23.4%) patients in the ¹⁷⁷Lu-PSMA-617 arm. Additional concerning adverse events included fatigue, xerostomia because of expression of PSMA in salivary glands, and nausea/vomiting.²⁸

IV. PATIENTS WITH HOMOLOGOUS RECOMBINATION REPAIR MUTATIONS

Poly (ADP-ribose) polymerase inhibitors (PARPi) Genetic testing may inform and optimize treatment selection for patients with mCRPC and should be performed in all patients with CRPC, if not done previously. Homologous recombination repair (HRR) gene mutations occur in approximately 20–30% of prostate cancers from patients with metastatic disease. The mutations in HRR genes commonly investigated in mCRPC include BRCA1, BRCA2, ATM, ATR, CHK1, CHK2, DSS1, RPA1, NBSI, FANCD2, FANCA, CDK12, PALB2, BRIP1, RAD51B, RAD51C, RAD51D, and RAD54.²⁹

The presence of HRR mutations has been associated with an early onset of disease, aggressive tumors, higher recurrence, and poor prognosis, with the most common altered gene being *BRCA2*. Defective HRR renders a cancer susceptible to poly (ADP-ribose) polymerase (PARP) inhibition in a form of synthetic lethality.

PARPi in mCRPC in those previously with ARPI

■ RECOMMENDATION 20

Olaparib 300 mg twice daily is recommended for patients with mCRPC and HRR mutation who have progressed on a previous ARPI (Level of evidence 1, Strong recommendation).

A randomized, phase 3 trial (PROfound) compared the PARPi, olaparib 300 mg twice daily, with physician's choice enzalutamide/abiraterone in patients with mCRPC with HRR mutations. Patients with HRR mutations and progression on prior enzalutamide and/ or abiraterone with or without prior exposure to a taxane (docetaxel, cabazitaxel) were eligible. The primary endpoint of the study was rPFS in patients with *BRCA1/2* or ATM mutations. Results favored olaparib (median 7.39 vs. 3.55 months; HR 0.34, 95% CI 0.25– 0.47, p<0.001).³⁰

The final results for OS also demonstrated a significant improvement among men with *BRCA1/2* or ATM mutations, with a median OS of 19.1 vs. 14.7 months (HR 0.69, 95% CI 0.50–0.97, p=0.0175). Of note, from patients in the physician's choice of enzalutamide/abiraterone arm who progressed, 67% crossed over to receive olaparib. Adjusting for crossover results in a HR 0.42 (95% CI 0.19–0.91).³¹

Other key secondary endpoints include significant improvements in overall measurable response rates of 33.3% vs. 2.3% (odds ratio [OR] 20.86, 95% CI 4.18–379.18, p<0.001) and delay in pain progression (HR 0.44, 95% CI 0.22–0.91, p=0.0192). Adverse events were more common in the olaparib arm (anemia, fatigue, nausea, diarrhea); however, patients reported HRQoL was improved in the olaparib arm of the study.³⁰

The Health Canada approval of olaparib is for patients with deleterious or suspected deleterious

germline or somatic BRCA1/2 or ATM mutations who have progressed following prior treatment with an ARPI (i.e., abiraterone, enzalutamide, apalutamide, darolutamide). The U.S. Food and Drug Administration approved olaparib for prostate cancers harboring a broader spectrum of 11 additional genes that are directly or indirectly involved in HRR (BRIPI, BARDI, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L), which comprised an additional cohort in the PROfound study. The European regulatory authority has approved olaparib only for BRCA1/2 alterations.

Further study is required to define optimal biomarker selection criteria to select patients with mCRPC with the highest potential for benefit from PARPi, as well as timing around taxane chemotherapy.

PARPi as first-line treatment in mCRPC

Olaparib plus abiraterone

RECOMMENDATION 21

Olaparib 300 mg twice daily plus abiraterone 1000 mg and prednisone 10 mg daily is recommended for patients with mCRPC with a BRCA1 or BRCA2 mutation (germline and/or somatic) who have not received previous ARPI (Level of evidence 1, Strong recommendation).

The PROpel trial was a phase 3 trial comparing abiraterone plus prednisone and olaparib vs. abiraterone plus prednisone and placebo in patients with mCRPC in the first-line setting.³² Patients (n=399) were enrolled regardless of HRR gene mutation (HRRm) status and were randomly assigned (1:1) to receive abiraterone 1000 mg once daily plus prednisone 5 mg twice daily with either olaparib 300 mg twice daily or placebo. The primary endpoint of rPFS was longer in the abiraterone plus olaparib group than in the abiraterone plus placebo group (24.8 vs. 16.6 months; HR 0.66, 95% CI 0.54–0.81, p<0.001).

Median OS trended to statistical significance: 42.1 months with olaparib plus abiraterone and 34.7 months with placebo plus abiraterone (HR 0.81, 95% CI 0.67–1.00, p=0.054). Post-hoc exploratory assessment of OS and rPFS was done in aggregate HRRm, non-HRRm, BRCA-mutated, and non-BRCA-mutated subgroups, with BRCA-mutated patients deriving greatest rPFS and OS benefits with olaparib plus abiraterone vs. placebo plus abiraterone (OS in BRCA-mutated group: HR 0.29, 95% CI 0.14–0.56; and rPFS in BRCA-mutated group:

HR 0.23, 95% Cl 0.12–0.43). Anemia (16.1% vs. 3.3%) was the most reported grade \geq 3 adverse event.

The benefits in BRCA-mutated subgroup have resulted in the Health Canada approval of olaparib and abiraterone as first-line therapy in mCRPC in those with *BRCA1/2* mutations.

Niraparib plus abiraterone

■ RECOMMENDATION 22

Niraparib 200 mg daily plus abiraterone 1000 mg and prednisone 10 mg daily is recommended for patients with mCRPC with a BRCA1 or BRCA2 mutation (germline and/or somatic) who have not received previous ARPI (Level 1, Strong recommendation).

The phase 3 trial MAGNITUDE randomized mCRPC patients to niraparib 200 mg daily plus abiraterone 1000 mg daily or placebo plus abiraterone.³³ Patients could have had systemic therapies for mCRPC or nmCRPC, including androgen receptor-targeted therapy (e.g., apalutamide, darolutamide, or enzalutamide) but prior treatment for mCRPC was not allowed. Patients were prospectively screened for HRR gene alterations (*ATM*, *BRCA1*, *BRCA2*, *BRIP1*, *CDK12*, *CHEK2*, *FANCA*, *HDAC2*, *or PALB2*) and included 423 with HRR gene alterations, of which 225 were either *BRCA1* or *BRCA2*.

Overall, 212 mCRPC with HRR gene alterations received niraparib plus abiraterone, with 113 having either a *BRCA1* or *BRCA2* mutation. With 24.8 months of median followup in the *BRCA1/2* subgroup, niraparib with abiraterone acetate plus prednisone significantly prolonged rPFS (19.5 vs. 10.9 months; HR 0.55, 95% CI 0.39–0.78, p 0.0007). Radiographic PFS was also prolonged in those with HRR gene alterations (HR 0.76, 95% CI 0.60–0.97, p=0.0280). Anemia (28.3% vs. 7.6%) and hypertension (14.6% vs. 12.3%) were the most reported grade \geq 3 adverse events.33

The benefits in BRCA-mutated subgroup have resulted in the Health Canada approval of niraparib and abiraterone as first-line therapy in mCRPC in those with *BRCA1/2* mutations.

Talazoparib plus enzalutamide

■ RECOMMENDATION 23

Talazoparib 0.5 mg daily plus enzalutamide 160 mg daily is recommended for patients with mCRPC with a HRR mutation (germline and/or somatic) who have not received previous ARPI (Level 1, Strong recommendation).

TALAPRO-2 was a phase 3 trial of 805 men randomized to talazoparib 0.5 mg daily plus enzalutamide or to placebo plus enzalutamide as first-line therapy in mCRPC.³⁴ Men were enrolled regardless of HRR alteration status, but HRRm and treatment of docetaxel and/ or abiraterone in the castration-sensitive setting were used to stratify the randomization. Median followup for rPFS was 24.9 months for the talazoparib group and 24.6 months for the placebo group.

At the planned primary analysis, median rPFS was not reached (95% CI 27.5 months–not reached) for talazoparib plus enzalutamide and 21.9 months (95% CI 16.6–25.1) for placebo plus enzalutamide (HR 0.63, 95% CI 0.51–0.78, p<0.0001). Subgroup analysis in the HRR-deficient subgroup showed rPFS was more strongly in favor of the talazoparib combination than in the HRR-proficient/unknown population (HR 0.46, 95% CI 0.30–0.70, p=0.0003 vs. HR 0.70, 95% CI 0.54–0.89, p=0.0039). In those with *BRCA1* or *BRCA2* mutations, talazoparib conferred a 77% lower risk of rPFS (HR 0.23, 95% CI 0.10–0.53, p=0.0002), whereas the corresponding reduction was 34% (HR 0.66, 95% CI 0.39–1.12, p=0.12) in those with non-*BRCA* HRR alterations.

In those receiving previous docetaxel, HR for rPFS was 0.51 (95% Cl 0.32–0.81, p=0.0034). Anemia (46.3% vs. 4.2%) and neutropenia (18.4% vs. 1.2%) were the most reported grade \geq 3 adverse events. The final results in the ITT population and HRRm group demonstrated an OS advantage of this combination. At the time of cutoff, 52% of patients in the talazoparib arm and 60% in the placebo arm had died. Median followup durations were 52.5 months for the talazoparib group and 53.0 months for the placebo group.

OS favored the talazoparib plus enzalutamide arm (HR 0.796, 95% Cl 0.661–0.958; two-sided p=0.0155). Median OS was 45.8 months (95% Cl 39.4–50.8) and 37 months (95% Cl 34.1–40.4) for the talazoparib plus enzalutamide and placebo plus enzalutamide arms, respectively. In subgroup analysis, patients with HRR deficiency showed OS benefits with the talazoparib combination (HR 0.549, 95% Cl 0.364–0.826, p=0.0035), as did patients who were HRR non-deficient or had unknown HRR status (HR 0.878, 95% Cl 0.713–1.080, p=0.218).

Exploratory analysis also showed a favorable OS trend for patients with non-*BRCA* HRR alterations (HR 0.749, 95% CI 0.582–0.963, p=0.024).³⁵ The benefits has resulted in the Health Canada approval of talazoparib plus enzalutamide as first-line therapy in mCRPC in those with HRR mutations.

V. Bone-supportive agents denosumab and zoledronic acid

■ RECOMMENDATION 24

In men with CRPC and bone metastases, denosumab (120 mg subcutaneous [SC]) or zoledronic acid (4 mg IV) every four weeks are recommended to prevent disease-related SREs, including pathological fractures, spinal cord compression, surgery, or radiation therapy to bone (Level of evidence 1, Strong recommendation).

Bone loss associated with ADT has been shown to increase the risk of fracture.³⁶ Moreover, about 90% of patients with mCRPC will develop bone metastases, which cause local decreases in bone integrity. Patients are at significant risk of SREs that include pathological fractures, debilitating bone pain requiring palliative radiation therapy, and spinal cord compression. Quality of life is affected by these complications.

Zoledronic acid is a third-generation nitrogen containing bisphosphonate. Bisphosphonates other than zoledronic acid are not known to be effective to prevent disease-related SREs. In the placebo-controlled zoledronic acid study, fewer men receiving zoledronic acid had SREs (38% vs. 49%; p=0.02).³⁷ Zoledronic acid also increased the median time to first SRE (488 vs. 321 days; p=0.01). There was an overall 36% reduction in the rate of SREs in treated patients.³⁷ **NOTE: Treatment with zoledronic acid should not be used in men with baseline creatinine clearance <30 mL/min.**

Denosumab is a fully humanized monoclonal antibody against RANK ligand. It has been shown to be effective in preventing bone loss and new vertebral fractures due to ADT.³⁸ In the setting of mCRPC, denosumab (120 mg SC every four weeks) compared to zoledronic acid (4 mg IV every four weeks) has shown significant improvement in the time to the first SRE (20.7 vs. 17.1 months; p<0.001 for non-inferiority; p=0.008 for superiority), while OS and PFS were not different.³⁶

No dose modification for renal function is necessary in the case of denosumab; however, the risk of hypocalcemia is increased, and calcium monitoring and supplementation (with calcium and vitamin D) is recommended for both denosumab and zoledronic acid. Denosumab has not been studied, however, in patients with severe renal impairment (glomerular filtration rate <30 mL/min).

2025 CUA-CUOG CRPC guideline summary

Castration-resistant prostate cancer (CRPC) includes a wide range of disease types: from patients without metastases or symptoms with rising prostate-specific antigen (PSA) levels despite androgen deprivation therapy (ADT) to patients with metastases and significant debilitation due to cancer symptoms.

Androgen deprivation therapy

Because androgen receptor remains active in most patients who have developed castration-resistant disease, it is recommended that ADT be continued for the remainder of a patient's life (Level 3, Strong recommendation).

I. Rising PSA non-metastatic CRPC (nmCRPC)

- ADT should be maintained in the nmCRPC state (Level 3, Strong recommendation). First-generation androgen receptor antagonists (i.e., bicalutamide, flutamide, etc.) should be discontinued if patients are receiving these agents (Level 3, Weak recommendation).
- Men with high-risk nmCRPC, defined as a PSADT <10 months, with an estimated life expectancy >5 years should be offered apalutamide, enzalutamide, or darolutamide (Level 1, Strong recommendation).
- In men with high-risk nmCRPC who are felt to be unsuitable or refuse approved therapies, observation or use of first-generation androgen receptor antagonists may be attempted (Level 3, Weak recommendation).
- Men with nmCRPC who are not considered high-risk, observation or secondary hormonal treatments may be attempted (Level 3, Weak recommendation).
- Patients who are untreated for nmCRPC should be followed with regular imaging every 6–12 months depending on PSA doubling time (PSADT) (Level 3, Weak recommendation).

II. Chemotherapy-naive metastatic CRPC (mCRPC)

- Abiraterone acetate 1000 mg/day plus prednisone 5 mg/twice daily is recommended as first-line therapy (Level 1, Strong recommendation).
- Enzalutamide 160 mg/day is recommended as first-line therapy (Level 1, Strong recommendation).
- Docetaxel 75 mg/m² every three weeks plus 5 mg oral prednisone twice daily can be offered (Level 1, Strong recommendation). The timing of docetaxel therapy in men with evidence of metastases but without symptoms should be discussed with the patient, and therapy should be individualized based on the patient's clinical status and preference.

III. mCRPC who progress after docetaxel-based chemotherapy

Options with survival benefit

- Cabazitaxel (25 mg/m2) plus prednisone (5 mg/day) (Level 1, Strong recommendation).
- Radium-223 every four weeks for six cycles in bone metastatic patients without visceral metastases (Level 1, Strong recommendation).
- 177Lu-PSMA-617 (177Lu vipivotide tetraxetan) for up to six cycles in patients with PSMA-expressing metastatic lesions who have progressed on at least one previous taxane chemotherapy and an ARPI (Level 1, Strong recommendation).
- If not received prior to docetaxel:
 - o Abiraterone acetate (1000 mg per day) plus prednisone (5 mg twice daily) (Level I, Strong recommendation)
- o Enzalutamide (160 mg/day) (Level 1, Strong recommendation)
- Options with unknown survival benefit
 - Docetaxel plus prednisone re-exposure in patients who have had a previous favorable response to docetaxel may be reasonable (Expert
 opinion).
 - Mitoxantrone plus prednisone may be offered for palliative pain relief (Expert opinion, Weak recommendation).

IV. Patients with CRPC and bone metastases (includes the pre- or post-chemotherapy settings)

- Denosumab (120 mg subcutaneous) or zoledronic acid (4 mg intravenous) every four weeks, along with daily calcium and vitamin D supplementation is recommended to prevent disease-related skeletal complications (Level I, Strong recommendation).

V. Patients with mCRPC and homologous recombination repair (HRR) mutation

Patients who have received previous androgen receptor pathway inhibitors (ARPI)

- Olaparib 300 mg twice daily (Level 1, Strong recommendation).
- Patients who did not receive previous ARPI
 - Olaparib 300 mg twice daily plus abiraterone 1000 mg and prednisone 10 mg daily is recommended for patients with mCRPC with a BRCA1 or BRCA2 mutation (germline and/or somatic) (Level 1, Strong recommendation).
 - Niraparib 200 mg daily plus abiraterone 1000 mg and prednisone 10 mg daily is recommended for patients with mCRPC with a BRCA1 or BRCA2 mutation (germline and/or somatic) (Level 1, Strong recommendation).
 - Talazoparib 0.5 mg daily plus enzalutamide 160 mg daily is recommended for patients with mCRPC with a HRR mutation (germline and/or somatic) (Level 1, Strong recommendation).

Figure 1. Management of castration-resistant prostate cancer (CRPC). ARPI: androgen receptor pathway inhibitors; BRCAm: breast cancer gene mutation; m: months; mCRPC: metastatic CRPC; HRR: homologous recombination repair; PSADT: prostate-specific antigen doubling time.

RECOMMENDATION 25

Good oral hygiene, baseline dental evaluation for high-risk individuals, and avoidance of invasive dental surgery during therapy are recommended to reduce risk of osteonecrosis of the jaw (ONJ) for patients treated with bone-targeted therapies (*Expert opinion*).

Zoledronic acid and denosumab have been used in combination with all the agents presently in use for the treatment of mCRPC. To date, there have been no additional safety issues of concern that have been reported.

■ RECOMMENDATION 26

The optimal duration of zoledronic acid and denosumab in men with CRPC and bone metastases is undefined. The risk of ONJ appears to be related to time on bone-targeted therapy, therefore, caution should be taken in using these agents beyond two years (Level 3, Weak recommendation).

RECOMMENDATION 27

Denosumab and zoledronic acid are not approved and not indicated for SRE prevention in the treatment of metastatic castration-sensitive prostate cancer or for bone metastases prevention.

CUA-CUOG Guideline: mCRPC

VI. OTHER SUPPORTIVE CARE THERAPIES

Systemic corticosteroid therapy

RECOMMENDATION 28

Corticosteroid therapy with low-dose prednisone or dexamethasone may also offer improvements in PSA values and/or palliative outcomes in up to 30% of patients in both symptomatic and asymptomatic men. Steroids may also exert an anti-neoplastic effect on prostate cancer (Level 3, Weak recommendation).³⁹

Palliative radiation

Bone metastases from prostate cancer are often radiosensitive and most men will experience partial or complete pain relief from external beam radiation to a specific lesion.⁴⁰ Studies have shown that a single fraction of standard palliative radiotherapy (RT) is as effective as five or more fractions in providing palliation; however, more patients require retreatment for pain recurrence with single fraction radiation. Stereotactic body RT (SBRT) is a more precise and may be a more effective form of palliation delivered in five or fewer treatments and may also be considered, particularly for oligometastatic disease, where high-dose RT is currently being studied for improved oncologic outcomes.

■ RECOMMENDATION 29

Malignant spinal cord compression is an oncologic emergency that requires immediate diagnosis with an MRI if suspected. Options for treatment are debulking surgery plus RT, vertebrectomy with stabilization and RT, or RT plus steroids (Level of evidence 1, Strong recommendation).

CONCLUSIONS

Advances in treatment for men with CRPC have improved survival and quality of life, but most, if not all, patients eventually succumb to their disease and better treatments are required. Several new agents are being studied in all states of CRPC and an increase in options is likely in the near future. Because CRPC remains an incurable and ultimately fatal illness, inclusion of patients in clinical trials remains paramount.

Summaries on the recommended treatment of CRPC are shown in Figures I and 2.

Figure 2. Management of castration-resistant prostate cancer (CRPC). ARPI: androgen receptor pathway inhibitors; BRCAm: breast cancer gene mutation; m: months; mCRPC: metastatic CRPC; HRR: homologous recombination repair; PSADT: prostate-specific antigen doubling time.

Bayer, Janssen, Novartis, Pfizer, and Sanofi. Dr. So has been an advisory board member for AbbVie, Astellas, Bayer, Janssen, Merck, and Tersera. Dr. Aprikian has been an advisory board member for Astellas, Bayer, Tolmar, and Tersera; a speakers' bureau member for Astellas, AbbVie, Bayer, Tolmar, and Tersera; and holds a leadership position with Nanostics. Dr. Fleshner has received honoraria, advisory consulting, and speaker bureau fees from AbbVie, Astellas, Janssen, Merck, and Sanofi; has received research funding (received by the institution) from Astellas, Bayer, and Janssen; holds stock in Verity; has participated in clinical trials supported by Astellas, Bayer, and Janssen, and is a medical officer for Point Biopharma. Dr. Niazi has been an advisory board member for GURC and Janssen; has received grants and/ or honoraria from AbbVie, Amgen, Astellas, AstraZeneca, Bayer, Jansen, Knight, Sanofi, and TerSera; holds investments in Knight; and has participated in clinical trials supported by Astellas, AstraZeneca, Bayer, Janssen, Sanofi, and TerSera. Dr. North has received honoraria from Astellas, AstraZeneca, BMS, Bayer, EMDSerono, Janssen, Merck, Novartis, Pfizer, and Roche; and

COMPETING INTERESTS: Dr. Saad has been an advisory board member for and has received payment/honoraria from Amgen, Astellas, AstraZeneca, Bayer, Janssen, Knight, Myovant, Novartis, Pfizer, Sanofi, and Tolmar, and has participated in clinical trials supported by Amgen, Astellas, AstraZeneca,

has participated in clinical trials supported by AAA, Pfizer, and Roche. Dr. Pouliot has been an advisory board member for and received payment or TerSera, and Tolmar; holds investments in Allogene Therapeutics; and has participated in clinical trials supported by CUOG and Kidney Cancer Canada. Dr. Rendon has been an advisory board and speakers' bureau member for and has received honoraria from AbbVie, Amgen, Astellas, Astra Zeneca, Bayer, Ferring, Jansen, Pfizer, Roche, Sanofi, and Tolmar; has received honoraria/grants from AbbVie, Astellas, Bayer, Ferring, Janssen, Sanofi, Tersera, and Tolmar; holds investments in Myovant; and has participated in clinical trials supported by AbbVie, Astellas, Bavarian Nordic, Bayer, Ferring, Janssen, Myovant, and Sanofi. Dr. Shayegan has been an advisory board member for AbbVie, Astellas, Bayer, Ferring, Janssen, Knight, Mérck, Pfizer, and Tersera; and has participated in clinical trials supported by Ipsen, Janssen, Merck, Myovant, and Pfizer. Dr. Sridhar has been an advisory board member for Astellas, AstraZeneca, Bayer, BMS, Immunomedex, Janssen, Merck, Pfizer, Roche, and Seagen. Dr. Vigneault has been an advisory board member for AbbVie, Bayer, Ferring, and Sanofi. Dr. Chi has received honoraria from Astellas, AstraZeneca, Daiichi Sanyko, Janssen, Merck, Novartis, Pfizer, Point Biopharma, Roche, and Sanofi; and has participated in clinical trials supported by Astellas, AstraZeneca, Daiichi Sankyo, Janssen, Merck, Novartis, Pfizer, Point Biopharma, Roche, and Sanofi. The remaining authors do not report any additional competing personal or financial interests related to this work.

REFERENCES

- Mohler JL, Gregory CW, Ford OH, 3rd, et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res 2004;10:440-8. https://doi.org/10.1158/1078-0432.CCR-1146-03
- Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008;26:1148-59. https:// doi.org/10.1200/JCO.2007.12.4487
- Smith MR, Kabbinavar F, Saad F, et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol 2005;23:2918-25. https://doi.org/10.1200/JCO.2005.01.529
- Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. *BMU* 2008:336:924-6. https://doi. org/10.1136/bmj.39489.470347.AD
- Small EJ, Halabi S, Dawson NA, et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: A phase 3 trial (CALGB 9583). J Clin Oncol 2004;22:1025-33. https://doi.org/10.1200/ ICO.2004.06.037
- Smith MR, Saad F, Chowdhury S, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378:1408-18. https://doi.org/10.1056/ NEJMoa1715546
- Fizazi K, Shore N, Tammela TL, et al. Darolutamide in non-metastatic, castrationresistant prostate cancer. N Engl J Med 2019;380:1235-46. https://doi.org/10.1056/ NEJMoa1815671
- Hussain M, Fizazi K, Saad F, et al. Enzalutamide in men with non-metastatic, castrationresistant prostate cancer. N Engl J Med 2018;378:2465-74. https://doi.org/10.1056/ NEJMoa1800536
- Saad F, Cella D, Basch E, et al. Effect of apalutamide on health-related quality of life in patients with non-metastatic castration-resistant prostate cancer: An analysis of the SPARTAN randomized, placebo-controlled, phase 3 trial. *Lancet Oncol* 2018;19:1404-16. https://doi.org/10.1016/S1470-2045(18)30456-X
- Smith MR, Saad F, Chowdhury S, et al. Apalutamide and Overall survival in prostate cancer. Eur Urol 2021;79:150-8. https://doi.org/10.1016/i.eururo.2020.08.011
- Tombal B, Saad F, Penson D, et al. Patient-reported outcomes following enzalutamide or placebo in men with non-metastatic, castration-resistant prostate cancer (PROSPER): A multicenter, randomized, double-blind, phase 3 trial. *Lancet Oncol* 2019;20:556-69. https://doi.org/10.1016/S1470-2045(18)30898-2
- Sternberg CN, Fizazi K, Saad F, et al. Enzalutamide and survival in non-metastatic, castration-resistant prostate cancer. N Engl J Med 2020;382:2197-206. https://doi. org/10.1056/NEJMoo2003892
- Fizazi K, Shore N, Tammela TL, et al. Non-metastatic, castration-resistant prostate cancer and survival with darolutamide. N Engl J Med 2020;383:1040-9. https://doi. org/10.1056/NEJMoa2001342
- Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368:138-48. https://doi.org/10.1056/ NEJMoa1209096

- Ryan CJ, Smith MR, Fizazi K, et al. Abiraterone acetate plus prednisone vs. placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebocontrolled phase 3 study. *Lancet Oncol* 2015;16:152-60. https://doi.org/10.1016/ S1470-2045(14)71205-7
- de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011;364:1995-2005. https://doi.org/10.1056/ NEJMoa1014618
- Beer TM, Tombal B. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371:1755-6. https://doi.org/10.1056/NEJMc1410239
- Beer TM, Armstrong AJ, Rathkopf D, et al. Enzalutamide in men with chemotherapy-naive metastatic castration-resistant prostate cancer: Extended analysis of the phase 3 PREVAIL study. Eur Urol 2017;71:151-4. https://doi.org/10.1016/j.eururo.2016.07.032
- Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367:1187-97. https://doi.org/10.1056/ NEJMoa1207506
- Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502-12. https://doi. org/10.1056/NEJMoa040720
- de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomized, open-label trial. *Lancet* 2010;376:1147-54. https://doi.org/10.1016/S0140-6736(10)61389-X
- Eisenberger M, Hardy-Bessard AC, Kim CS, et al. Phase 3 study comparing a reduced dose of cabazitaxel (20 mg/m²) and the currently approved dose (25 mg/m²) in postdocetaxel patients with metastatic castration-resistant prostate cancer-PROSELICA. J Clin Oncol 2017;35:3198-206. https://doi.org/10.1200/JC0.2016.72.1076
- Oudard S, Kramer G, Caffo O, et al. Docetaxel rechallenge after an initial good response in patients with metastatic castration-resistant prostate cancer. BJU Int 2015;115:744-52. https://doi.org/10.1111/bju.12845
- Parker C, Zhan L, Cislo P, et al. Effect of radium-223 dichloride (Ra-223) on hospitalization: An analysis from the phase 3 randomized Alpharadin in Symptomatic Prostate Cancer Patients (ALSYMPCA) trial. *Eur J Cancer* 2017;71:1-6. https://doi. org/10.1016/j.ejca.2016.10.020
- Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369:213-23. https://doi.org/10.1056/ NEJMoa1213755
- Smith M, Parker C, Saad F, et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): A randomized, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncol* 2019;20:408-19. https://doi.org/10.1016/S1470-2045(18)30860-X
- Hofman MS, Emmett L, Sandhu S, et al. [¹¹⁷Lu]Lu-PSMA-617 vs. cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomized, openlabel, phase 2 trial. *Lancet* 2021;397:797-804. https://doi.org/10.1016/S0140-6736(21)00237-3
- Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castrationresistant prostate cancer. N Engl J Med 2021;385:1091-103. https://doi.org/10.1056/ NEJMoa2107322
- Scott RJ, Mehta A, Macedo GS, et al. Genetic testing for hamologous recombination repair (HRR) in metastatic castration-resistant prostate cancer (mCRPC): Challenges and solutions. Oncotarget 2021;12:1600-14. https://doi.org/10.18632/oncotarget.28015
- de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382:2091-2102. https://doi.org/10.1056/NEJMoa1911440
- Hussain M, Mateo J, Fizazi K, et al. Survival with alaparib in metastatic castrationresistant prostate cancer. N Engl J Med 2020;383:2345-57. https://doi.org/10.1056/ NEJMoo2022485
- Saad F, Clarke NW, Oya M, et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): Final prespecified overall survival results of a randomized, double-blind, phase 3 trial. *Lancet Oncol* 2023;24:1094-108. https://doi.org/10.1016/S1470-2045(23)00382-0
- Chi KN, Sandhu S, Smith MR, et al. Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: Second interim analysis of the randomized phase 3 MAGNITUDE trial. Ann Oncol 2023;34:772-82. https://doi.org/10.1016/j.annonc.2023.06.009
- Agarwal N, Azad AA, Carles J, et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomized, placebocontrolled, phase 3 trial. *Lancet* 2023;402:291-303. https://doi.org/10.1016/S0140-6736(23)01055-3

- Agarwal N, Azad A, Carles J, et al. Final overall survival (OS) with talazoparib (TALA) + enzalutamide (ENZA) as first-line treatment in unselected patients with metastatic castration-resistant prostate cancer (mCRPC) in the phase 3 TALAPRO-2 trial. J Clin Oncol 2025;43:abstr LBA18. https://doi.org/10.1200/JCO.2025.43.5_suppl.LBA18
- Shohinian VB, Kuo YF, Freeman JL, et al. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 2005;352:154-64. https://doi.org/10.1056/ NEJMaa041943
- Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 2004;96:879-82. https://doi.org/10.1093/jnci/djh141
- Smith MR, Egerdie B, Hernandez Toriz N, et al. Denosumab in men receiving androgendeprivation therapy for prostate cancer. N Engl J Med 2009;361:745-55. https://doi. org/10.1056/NEJMoa0809003
- Storlie JA, Buckner JC, Wiseman GA, et al. Prostate-specific antigen levels and clinical response to low-dose dexamethasone for hormone-refractory metastatic prostate carcinoma. Cancer 1995;76:96-100. https://doi.org/10.1002/1097-0142(19950701)76:1<96::AID-CNCR2820760114>3.0.C0;2-E
- Loblaw DA, Mitera G, Ford M, et al. A 2011 updated systematic review and clinical practice guideline for the management of malignant extradural spinal cord compression. Int J Radiat Oncol Biol Phys 2012; 84:312-7. https://doi.org/10.1016/j.ijrobp.2012.01.014

CORRESPONDENCE Dr. Fred Saad, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada; fred.saad@umontreal.ca