2012 Update: Guidelines for Adult Urinary Incontinence
Collaborative Consensus Document for the Canadian
Urological Association

Mathieu Bettez¹, Le Mai Tu¹, Kevin Carlson², Jacques Corcos³, Jerzy Gajewski⁴, Martine Jolivet⁵, Greg Bailly⁴

¹Department of surgery, Division of Urology, Université de Sherbrooke
²Department of surgery, Division of Urology, Calgary University
³Department of Surgery, Division of Urology, McGill University
⁴Department of Urology, Dalhousie University
⁵Department of Surgery, Division of Urology, Université de Montréal

Keywords: stress urinary incontinence, urgency urinary incontinence, overactive bladder, men, women, adult, frail, elderly, treatment, reviews, guidelines

Corresponding author:
Dr. Le Mai Tu, MD, MSc
Professor
Centre Hospitalier Universitaire de Sherbrooke, Urology Division, Department of surgery
3001, 12e Avenue Nord
Sherbrooke, QC, J1H 5N4
Tel: 819-346-1110
Fax: 819-820-6411
Email: le.mai.tu@usherbrooke.ca
Table of content

1. Methodology ... 4

2. Introduction and Epidemiology of urinary incontinence in Canada 5-6
 2.1 Specific considerations in men .. 5
 2.2 Specific considerations in frail elderly .. 6

3. Evaluation ... 6-8
 3.1 Specific considerations in men .. 6
 3.2 Specific considerations in frail elderly .. 7

4. Treatment of Urgency Urinary Incontinence .. 8-10
 4.1 Specific considerations in men .. 10
 4.2 Specific considerations in frail elderly .. 10

5. Treatment of Stress Urinary Incontinence ... 10-13
 5.1 Women ... 10-12
 5.2 Post prostatectomy ... 12-13

6. Treatment of Mixed Urinary Incontinence .. 13-14

7. Treatment of Urinary Incontinence in Frail Elderly .. 14

8. Conclusion ... 14

9. Algorithm ... 15-17
 9.1 Women ... 15
 9.2 Men .. 16
 9.3 Frail elderly .. 17

10. References ... 18-21

11. Appendix A ... 22
Abbreviations:
ACOG: American Congress of Obstetricians and Gynecologists
AFS: Autologous fascial sling
AUA: American Urological Association
AUS: Artificial urinary sphincter
BF: Biofeedback
BNS: Bladder neck sling
BOO: Bladder outlet obstruction
BoTN-A: OnabotulinumtoxinA
BPO: Benign prostatic obstruction
BT: Bladder training
CIC: Clean intermittent catheterization
CUA: Canadian Urological Association
DHIC: Detrusor hyperactivity with impaired contractility
DO: Detrusor overactivity
ER: Extended release
EUA: European Urological Association (EUA)
ICS: International Continence Society
IR: Immediate release
ISD: Intrinsic sphincter deficiency
IUGA: International Urogynecological Association (IUGA)
LUTS: Lower urinary tract symptoms
MMK: Marshall-Marchetti-Krantz
MUI: Mixed urinary incontinence
MUS: Mid-urethral sling
OAB: Overactive bladder
PFMT: Pelvic floor muscle training
PPUI: Post-prostatectomy urinary incontinence
PRPUI: Post radical prostatectomy urinary incontinence
PTNS: Percutaneous tibial nerve stimulation
PVR: Post-void residual
SIS: Single incision sling
SNM: Sacral neuromodulation
SOGC: Society of Obstetricians and Gynecologists of Canada
SUI: Stress urinary incontinence
U: Units
UDS: Urodynamic Studies
UH: Urethral hypermobility
UI: Urinary incontinence
UITN: Urinary Incontinence Treatment Network
UTI: Urinary tract infection
UIU: Urgency urinary incontinence
TOT: Trans-obturator tape
VC: Vaginal cones
1. Methodology

Adult urinary incontinence is a highly prevalent condition, and one which can have a major impact on patients’ quality of life. It is also a major focus of a urologist’s workload. As a result, the Canadian Urological Association, with the aid of its Guidelines Committee, commissioned the development of a practice guideline document in 2005 first authored by Dr Jacques Corcos. As per the CUA Guidelines Committee’s mandate, all guidelines are subject to revision after five years.

A comprehensive review of the studies published from January 2005 and November 2011 was performed using PubMed, MEDLINE and The Cochrane Library databases. In addition, the bibliographies of all relevant articles were searched to avoid exclusion of significant articles. Focus was on systematic reviews, meta-analyses and evidence-based recommendations, when available. Data from the latest consensus of the International Continence Society (ICS), the International Consultation on Incontinence (ICI), the International Urogynecological Association (IUGA), the American Urological Association (AUA), the European Association of Urology (EAU), the Urinary Incontinence Treatment Network (UITN), the Society of Obstetricians and Gynecologists of Canada (SOGC) and the American Congress of Obstetricians and Gynecologists (ACOG) were also incorporated. This review does not address urinary incontinence in children or patients with neurogenic bladder. All articles were reviewed using the Evidence-Based Medicine (EBM) levels, with a Modified Oxford grading System. (Appendix A)
2. Introduction and Epidemiology of urinary incontinence in Canada

Urinary incontinence (UI) can be defined as a complaint of any involuntary leakage of urine. It is estimated that 3.3 million (10%) Canadians experience incontinence, making it a highly prevalent condition, and one that is associated with a significant economic burden.\(^1\) Incontinence can be classified into three broad categories: stress, urge and mixed. Stress urinary incontinence (SUI) is defined as leakage associated with exertion, sneezing or coughing, and represents 50% of patients with incontinence in Canada.\(^1,2\) Urgency urinary incontinence (UUI) is leakage immediately preceded by or associated with a sudden desire to void, representing 14% of patients.\(^1,2,3\) Mixed urinary incontinence (MUI) is characterized by the combination of UUI and SUI and represents 32% of patients in Canada.\(^1,2,3\)

Lower urinary tract symptoms (LUTS) include storage, voiding, and post-micturition symptoms. Although the term LUTS was originally used to describe male bladder outlet symptoms, this term can also be used to describe symptoms both in men and women. These may arise from the bladder, or bladder outlet (including the prostate) conditions, in addition to non-urinary tract sources, such as polypharmacy, polyuria, iatrogenic and psychogenic disorders.\(^2\)

Overactive bladder (OAB) is a common condition defined as urgency, with (OAB wet) or without urgency incontinence (OAB dry), usually associated with increased daytime frequency and nocturia.\(^2\) In a recent Canadian population-based study, OAB symptoms were reported in 13.9% of respondents (13.1% of men and 14.7% of women). UI was reported by 28.8% of women with 68% having SUI, 21% MUI and 11% UUI. In men, 5.4% of respondents had UI (26% SUI, 15% MUI and 58% UUI). The prevalence of OAB symptoms were similar in both sexes; however, OAB with UUI is more common in women (7.1% vs 3.3%). Furthermore, OAB symptoms are more significant with increasing age (23.8% for > 60 yo vs 12.2% for < 60 yo).\(^4\)

Less common categories of urinary incontinence include total incontinence (associated with urinary tract fistula or ectopic ureter), functional (associated with psychiatric or mobility disorder), uncategorized, overflow, post-micturition dribble, radiotherapy and climacturia.

2.1 Specific considerations in men

OAB symptoms are a key component of LUTS in many men with or without bladder outlet obstruction (BOO). Although a very important element in some, prostatic enlargement is not the sole factor contributing to LUTS, and many men may present with primary idiopathic OAB. Even in those men with BOO, treatment aimed at relieving the obstruction leads to resolution of OAB symptoms in only 35% of men.\(^5\) This supports the need for increased awareness of the existence of primary OAB in men presenting with LUTS, and must be considered in their management.

Post-prostatectomy urinary incontinence (PPUI) is usually due to direct damage to the external urethral sphincter. The incidence of SUI after treatment of prostatic benign
disease either using classical trans-urethral resection or laser therapy is estimated to be less than 1-3%.

The incidence of post-radical prostatectomy urinary incontinence (PPI) is variable depending on the definition, the evaluation tool, and the collection method used. In general, 1-40% of patients suffer PPI. It may be caused by bladder dysfunction, sphincter dysfunction or a combination of both. Bladder dysfunction presenting as OAB wet may contribute to PPUI but is rarely the sole cause (< 10%). Sphincteric deficiency remains the major cause of UI in more than two-thirds of patients. A combination of both is present in at least one third of the patients. Only 6-9% of PPUI will ultimately require surgical intervention. New laparoscopic and robotic-assisted prostatectomy techniques use many of the same surgical principles as open surgery. It was initially thought that these techniques would lead to improved post-operative continence, however, comparative systematic reviews have not proven this. Operative skills, bladder neck preservation and neurovascular bundle sparing technique may help to minimize the postoperative morbidity, however no significant benefits have been confirmed to date. The CADTH (Canadian Agency for Drugs and Technologies for Health) recently reported the comparison of postoperative morbidities between different surgical techniques of radical prostatectomy (open vs laparoscopic vs robot assisted). There was a statistical difference in urinary incontinence at 12 months post-op in post-learning curve procedures between open versus robot-assisted techniques, but the results were inconclusive between laparoscopic versus robot-assisted. However, since these data were extracted from observational studies, with discrepant populations (in terms of age, follow-up and availability of preoperative data), the authors concluded that the general impact of these findings is likely to be small.

2.2 Specific considerations in frail elderly patients

UI is a frequent and disabling condition affecting 30-60% of patients over 65 years old, and increasing exponentially with age. The prevalence is even higher for the frail and elderly ranging from 43-77% (median 58%). The frail older person can be defined as “a clinical phenotype combining impaired physical activity, mobility, balance, muscle strength, motor processing, cognition, nutrition, and endurance; associated high medication use and being homebound or in a care institution and a high risk of intercurrent disease, increased disability, hospitalization and death”. Because of these special features, the management of UI in this population will be addressed. The predominant type of UI in elderly women is MUI. (level of evidence 1) A number of patients with overactive bladder symptoms have detrusor overactivity that may be combined with impaired contractility (DHIC, 33%).

3. Evaluation

The evaluation of a patient with UI should be systematic and include history, past medical history, review of systems, social history, physical examination, investigations and treatment expectations. (level of evidence 2, grade B) Important elements to consider on history include a review of storage, voiding and post-micturition symptoms, the type and severity of incontinence and degree of bother. (level of evidence 3, grade B) Additional information includes the presence of pain, hematuria, recurrent infections, symptomatic pelvic organ prolapse in women, failed previous anti-incontinence surgery,
previous pelvic radiation therapy or surgery and suspected fistula.¹⁹

The physical examination evaluates the general status (mental status, obesity, physical dexterity and mobility), abdominal examination (masses, bladder overdistension, scars), pelvic examination in women (perineum and external genitalia including tissue quality and sensation, vaginal size, vaginal examination with a speculum for vaginal prolapse), bimanual pelvic and anorectal examination for pelvic mass and pelvic muscle function, cough stress test¹⁸ (grade C), a focused neurological examination when indicated and a DRE in men (level of evidence 4, grade C).

Initial investigations include a urinalysis and a 3-day voiding diary.²,²⁰ (grade C) In specific clinical situations, the following tests are recommended: symptoms / quality of life questionnaires (ICIQ (grade A), IIQ-7, UDI-6), pad weight testing, serum creatinine, uroflowmetry, post-void residual volume (PVR), methylene blue or pyridium pad testing, cystoscopy and urodynamic testing (UDS).¹⁷ Uroflowmetry and PVR assessment is recommended in the presence of significant voiding symptoms, symptomatic pelvic organ prolapse or bladder overdistension. A cystourethroscopy should be performed when the initial testing suggest other pathologies e.g. LUTS combined with pain or discomfort, hematuria, or when a fistula is suspected. UDS is indicated when the diagnosis remains uncertain after history and physical examination, when the symptoms do not correlate with physical findings or after failed previous treatment.²¹ (level of evidence 3, grade C)

3.1 Specific considerations in men

In men with OAB, symptoms and quality of life assessment is recommended along with DRE and PSA. Measurement of PVR is an optional evaluation tool. (level of evidence 4)

Most radical prostatectomy patients experience some incontinence immediately after catheter removal. In some men, continence can be achieved as early as a few weeks after surgery, but it may take up to 12 months to recover.⁷ (level of evidence 4) The evaluation of PPI includes a thorough history, physical examination, urinalysis, urine culture, bladder diary, pad test (level of evidence 1-2, grade B) and an assessment of PVR.²,⁷ (level of evidence 1-2, grade A) The 24-hour pad test most accurately reflects the severity of urinary incontinence.⁷,¹¹,¹⁹ However, ICS standardized 1-hour pad test is more widely adopted in the clinical setting.⁹ A cystourethroscopy and UDS are recommended to assess lower urinary tract anatomy and function in patients who fail conservative and pharmacologic managements.²² (level of evidence 2-3, grade B)

3.2 Specific consideration in frail elderly patients

Due to the high prevalence of urinary incontinence in the elderly, screening for UI should be included in the annual health evaluation.¹⁴ (grade A) The assessment must include an evaluation of comorbidities, medications, functional and cognitive impairment.²³ (grade B) In addition, fluid/volume status, accessibility to toilets and social or caregiver support should be assessed. The evaluation should initially focus on reversible conditions that can cause or exacerbate urinary incontinence. These patients
can be divided into three categories: lower urinary tract (symptomatic UTI, atrophic vaginitis, post-prostatectomy, stool impaction, drug side effects, diuretics, anticholinergics, psychotropics, narcotics/analgesics, alpha-adrenergic agonists and blockers, alcohol and caffeine), increased urine production (metabolic, excess fluid intake, volume overload) and impaired ability or willingness to reach a toilet (delirium, chronic illness, neurologic diseases and psychological).\cite{23,24}

While evaluating UI in the frail elderly patient, it is reasonable to look for the 7 possible causes of transient UI described by the acronym and mnemonic DIAPPERS (Delirium, Infection, Atrophic vaginitis, Psychological, Pharmacologic, Excess urine output, Restricted mobility and Stool impaction). The treatment of these factors is straightforward and may improve patients’ symptoms.\cite{19} (grade C)

4. Treatment of Urgency Urinary Incontinence

Conservative therapy should be considered prior to the initiation of medical or surgical treatment of UUI. These include behavioural modifications such as scheduled voiding, fluid restriction when appropriate (grade B), smoking cessation (grade C), avoidance of caffeine and bladder training (BT)\cite{2,25} (grade A) Pelvic floor muscle training (PFMT) has been shown in some studies to be effective in improving UUI. In fact, it has been suggested to be better than oxybutinin as first-line therapy.\cite{19} (grade B) If conservative measures alone are not effective, one should consider adding in pharmacological therapy. Antimuscarinics are appropriate as first or second-line treatment for UUI. (grade B) In clinical practice, patients are considered to have refractory UUI if they have failed at least 2 adequate treatments of antimuscarinic drugs. OnabotulinumtoxinA (BoNT-A) (off-label), neuromodulation and surgical interventions, such as augmentation cystoplasty, are all acceptable options for a small percentage of patients who do not respond to conservative and drug therapies depending on availability of resources.

The available pharmacological treatment includes oxybutinin immediate release (IR), extended release (ER) or transdermal, tolterodine (IR or ER), solifenacin, darifenacin, trospium chloride and fesoterodine (not currently approved in Canada). Level 1A evidence exits for each of these drugs showing superior efficacy versus placebo. Choice of agent may depend on physician experience and preference, formulary coverage, and/or patient preference and insurance coverage. A trial of 4-12 weeks is recommended to assess efficacy.\cite{2} Another antimuscarinic agent can be considered in case of failure or intolerability. The agents differ by route and frequency of administration, receptor and organ selectivity, molecular size and lipophilicity, and metabolism, all of which translate to various (often subtle) clinical differences. (Table 1) Possible adverse effects are dry mouth, blurred vision, pruritus, tachycardia, somnolence, impaired cognition, headache and constipation. Antimuscarinics are contraindicated in patients with urinary retention, gastric retention and uncontrolled narrow-angle glaucoma.\cite{26}

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Receptor Selectivity</th>
<th>Mode of Release and Trade Name</th>
<th>Start dose</th>
<th>Max. dose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Slightly higher M1-M3 over M2 (clinical significance unclear)</td>
<td>IR (Ditropan)</td>
<td>ER (Ditropan XL)</td>
<td>Transdermal patch (Oxytrol)</td>
<td>Transdermal gel (Gelnique)</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Oxybutinin</td>
<td></td>
<td>2.5 mg tid</td>
<td>5 mg od</td>
<td>3.9 mg/d</td>
<td>1 gm gel (~4 mg oxybutynin) daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mg qid</td>
<td>30 mg od</td>
<td>2 patch/week</td>
<td>Low rate of skin reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Antimuscarinic drugs for treating OAB.²⁵,²⁶,²⁸,²⁹

A new drug will be available in near future. Mirabegron (B3-adrenoreceptor) showed benefit over placebo and similar improvement as tolterodine. The adverse effects profile seems superior to antimuscarinics (mainly for cognitive impairment), however, an assessment of long-term safety profile on heart rate and blood pressure needs to be performed.³⁰

The use of BoTN-A for refractory OAB is not approved by Health Canada at this time, but experience exists in other countries. The continence rates following BoTN-A injection varies between 29-87%.³¹,³² It has a variable duration of action (mean 6-9 months) with loss of efficacy seen within the first year of injection. Repeat injections appear to have a maintained efficacy without increase in adverse events.³³ (grade B) This treatment is not yet approved for idiopathic OAB in Canada.³⁴ The optimal dose, site of injection, appropriate population and long-term safety remain unclear. The need for post treatment catheterization is 0-25% for 100U.³⁵,³⁶ (ENREF 30) BoTN-A is contraindicated in conditions that interfere with neuromuscular transmission (myasthenia gravis, Eaton-Lambert syndrome, Charcot-Marie-Tooth and aminoglycoside treatment).

SNM (level of evidence 1-3) (grade A) is approved by Health Canada for refractory UUI. The cure rate of UUI is 39% and an improvement of greater than 50% is
seen in 67% of patients. Long-term success has been evaluated with more than 10 years follow-up with sustained results. Other possible complications are pain at implantation site (2.5%), lead migration (0.6%), wound problems (7%), bowel dysfunction (6%), infection (2.5%) and generator problems (5%). It is an expensive treatment and proper patient selection is paramount.

Percutaneous tibial nerve stimulation (PTNS) is another treatment option for refractory UUI with a response rate of 54-81%. New evidence suggests that PTNS lack side effects and that a 12-week treatment offers a durable response even at 12 month of follow-up; however, maintenance treatment appears to be necessary for sustained efficacy. (level of evidence 1, grade B) Unfortunately, this treatment is labor intensive, the cost is higher than anticholinergic therapy and the long-term outcome is unavailable.

Augmentation cystoplasty can be considered in special circumstances after failing all other options. Patients should be aware of the potential need for intermittent catheterization. However, only 50% of patients will be satisfied with the outcome of this procedure. (level of evidence 3, grade C)

4.1 Specific considerations in men

The management of male UUI follows the same general principles as above. Antimuscarinic agents may be used alone as first line therapy when primary idiopathic OAB exists. Because OAB increases with age, as does BPO, a significant number of patients will have both conditions. In these patients, the BPO should be treated first with either alpha-blockers (AB) or 5-alpha-reductase inhibitors (5-ARI), or a combination of the two. (level of evidence 2, grade B) If storage symptoms persist after a trial of AB for 4-6 weeks, an antimuscarinic therapy can be instituted safely if the PVR is low (< 200 mL) and the Qmax ifs > 5 mL/s. (level of evidence 2, grade B) Antimuscarinics have been shown not to significantly increase the PVR or the rate of acute urinary retention.

4.2 Specific considerations in frail elderly

Pharmacologic therapy must be approached very carefully in the geriatric population due to the increase in potential side effects in this patient population. For UUI or MUI, antimuscarinic drugs can be prescribed with varying success rates. (level of evidence 2, grade B) When starting therapy, important factors including polypharmacy, pharmacokinetics, adverse drug reactions, drug-drug interactions and drug-disease interactions must be considered. Moreover, dose titration regimen and evaluation of the balance between clinical benefits and side effects should be considered. There is potential of a negative impact on cognitive function with any antimuscarinic.

Other etiologies may contribute to OAB symptoms in this patient population, including BOO, detrusor underactivity, or detrusor hyperactivity with impaired contractility (DHIC), with an elevated PVR. The treatment of these conditions should be aimed first toward ensuring bladder emptying.
5. Treatment of Stress Urinary Incontinence

5.1 Women

Initial management should start with lifestyle advice, physical therapies, scheduled voiding, behavioural therapies and medication. Lifestyle advice includes caffeine reduction (grade B), weight loss for the obese person (grade A), control of constipation (grade C), decrease in fluid intake in patients who are overhydrating and efforts to decrease chronic cough (smoking cessation). Pelvic floor muscle training (PFMT) should be offered as a first line therapy for SUI. Intensive and supervised PMFT is recommended if available. The benefit of biofeedback is unknown. Vaginal cones (VC) can be offered for first line treatment for SUI or MUI, but its use may be limited due to discomfort. Pessaries may be considered in the treatment of SUI even without concomitant pelvic organ prolapse. (level of evidence 3, grade C) Behavioral therapy results in improvement of patients ’symptoms at 3 month but this difference is not sustained at 12 months. (level of evidence 2) Oral estrogen replacement is not recommended for the treatment of SUI. (level of evidence 2, grade B) Initial conservative management should be attempted for 8-12 weeks and thereafter the patient should be reassessed for success.

When urethral hypermobility (UH) is present, the surgical treatment options include retropubic suspension, bladder neck slings and synthetic mid urethral sling (MUS). (grade A) When intrinsic urethral deficiency is the primary cause, treatment options include bulking agents (grade B), bladder neck slings (grade A) / retropubic MUS and artificial urinary sphincter (grade B).

Open retropubic colposuspension is an effective treatment for primary SUI which has longevity. (grade A) In the past decade, open colposuspension has been largely replaced by MUS. The risk of voiding dysfunction and need for prolapse surgery is higher with open colposuspension than MUS, including the retropubic approach. (level of evidence 1)

Bladder neck slings (BNS) can be performed with a variety of materials, including fascia (autologous or cadaveric), porcine dermis, and mesh. Autologous fascial sling (AFS) is an effective treatment for SUI that has longevity and may be more effective than other biological and synthetic slings. (grade A) The porcine dermal graft appears to lose tensile strength over time and is associated with a decreased cure rate compared to AFS and MUS. (table 1) BNS leads to the development of more storage LUTS than MUS, including the retropubic approach. (level of evidence 2)

Retropubic MUS is more effective than Burch colposuspension, but equally as effective as fascial slings. (level of evidence 2) (table 1) AFS may result in more de novo storage LUTS than retropubic MUS. Retropubic and transobturator MUS are equally effective at 6-12 months and complication rates are comparable. (level of evidence 2) MUS are contraindicated with urethrovaginal fistula, urethral diverticulum, intra-operative urethral injury, active UTI and untreated urinary malignancy. Retropubic slings have higher rates of bladder perforation, while transobturator tapes are associated with higher rates of groin pain and mesh exposure. Intraoperative cystoscopy is
recommended during the placement of any MUS to assess for any injury to the bladder or urethra.58 Patients must be counselled preoperatively that the use of mesh in any pelvic floor surgery can be associated with complications ranging from minor to major (such as erosion), and these complications may necessitate repeat surgical intervention. Patients should be invited to read the FDA and/or Health Canada advisory on these products.

In an attempt to reduce morbidity associated with synthetic MUS, single incision slings (SIS) were developed. These slings have potential advantages of reduced operative time, minimal dissection and less post-operative pain. However, available data and short-term results are insufficient to allow any recommendation.59

Currently, the Marshall-Marchetti-Krantz (MMK), the needle suspension procedure and paravaginal defect repair are not recommended for the treatment of SUI. (grade A) Laparoscopic colposuspension shows comparable subjective outcome, but poorer objective outcome compare to open colposuspension and MUS in the short- and medium-term. (level of evidence 2) It is not recommended for routine surgical treatment of SUI. (grade A) However, it might be considered in women who need a concomitant laparoscopic surgery, and in these cases, experienced laparoscopic surgeons should perform it.19 (grade D)

<table>
<thead>
<tr>
<th>Category</th>
<th>Procedure</th>
<th>Objective cure rate (short term)</th>
<th>Objective cure rate (long term)</th>
<th>Level of evidence</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNS</td>
<td>AFS</td>
<td>90%</td>
<td>82% after 48 mo</td>
<td>A</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFS</td>
<td>74%</td>
<td>80% up to 43 mo</td>
<td>B</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcine dermis</td>
<td>73%</td>
<td>54% at 36 mo</td>
<td>B</td>
<td>53,60</td>
<td>Not recommended</td>
</tr>
<tr>
<td>MUS</td>
<td>Retropubic (TVT)</td>
<td>88%</td>
<td>90% at 10y</td>
<td>A</td>
<td>61</td>
<td>Similar subjective cure rate (83%), TOT less complications61</td>
</tr>
<tr>
<td></td>
<td>Transobturator (TOT)</td>
<td>84%</td>
<td>84% at 5y</td>
<td>B</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Open colposuspension</td>
<td>Burch</td>
<td>85-90%</td>
<td>70% at 5y</td>
<td>A</td>
<td>62, ENREF 24</td>
<td>MMK, needle suspension and paravaginal defect repair not recommended</td>
</tr>
</tbody>
</table>

Table 2: Cure/dry rates of different anti-incontinence procedures for SUI.

Periurethral bulking agents are an option for patients who do not wish to undergo more invasive surgery. Other indications include elderly and patients with a high anaesthetic risk. The benefit of bulking agents is limited and short-term. Patients should be aware that repeat injections are likely to be required and that efficacy (48% at 12-23 months to 32% at 24-47 months) is inferior to conventional surgical techniques and diminishes over time (dry rate on a 24h pad test).48,58 (grade B)
Data regarding use of the artificial sphincter for female SUI are limited, but the procedure may be considered with non-functioning urethras secondary to trauma to the pelvic nerves, severe ISD with multiple prior failed surgical procedures and significant SUI with poor bladder contractility.\(^{58}\) \textbf{(level of evidence 3, grade B)} Erosion (28%), infection and device malfunction are potential complications.

5.2 Post prostatectomy

As a conservative and preventive management of PPI, PFMT is recommended for the initial treatment for PPUI.\(^{9}\) PMFT can be either self-administered or assisted by a physical therapist. Duration benefit may be modest and short (< than 12 months after surgery).\(^{11}\) \textbf{(level of evidence 2, grade B)} Preoperative biofeedback (BF) assisted behavioral training can shorten the time to regain continence postoperatively and can reduce the prevalence of severe persistent incontinence 6 months after prostatectomy.\(^{63-65}\) \textbf{(level of evidence 2, grade B)} However, these observations are inconsistent. Post-operative electrical stimulation or BF does not appear to improve continence outcomes over PMFT.\(^{65}\) \textbf{(level of evidence 2, grade B)}

A surgical intervention is offered usually 6-12 months after prostate surgery.\(^{6}\) Surgical choice is dependent on the severity of incontinence and patient expectations, and includes male sling, para-urethral inflatable devices or artificial urinary sphincter (AUS). In patients with previous bladder neck stricture, bladder neck patency must be established for a period of 6 months before undergoing surgery for PPUI. \textbf{(level of evidence 4, grade C)}

Currently, for patients with mild to moderate PPI (24-hour pad test < 400gm/d), the male sling appears to be an evolving option.\(^{6,7,9,66}\) \textbf{(ENREF 8)} The bone anchor (InVance, AMS) has demonstrated success rates (cured or improved) at medium term follow-up of 40-88%.\(^{6,66}\) Transobturator slings (Advance, AMS) have success rates of 62-91%.\(^{6}\) Adjustable retropubic male slings (Remeex, ARGUS, Red Leaf) have shown similar success rates at mid-term follow-up.\(^{6}\) Common complications associated with slings include transient acute urinary retention (0-15%), perineal/scrotal pain/numbness (16-72%) that usually resolve over time (within 3 months), erosion (0-2%), sling/perineal infection (2-12%) and de novo detrusor overactivity (0-14%).\(^{6,7}\) Several parameters are of paramount importance in order to have a successful implantation of a male sling. Patients with severe incontinence, previous radiation and prior failed AUS generally have worse outcomes.\(^{7}\) \textbf{(level of evidence 3, grade C)} Male slings have potential advantages compared with AUS (physiologic voiding, less expensive, possible option for poor cognition patients and no manual dexterity is required).

Alternatively, the para-urethral inflatable devices may improve continence in the short- and medium-term. The results are variable and complications rate are high. For these reasons, making recommendation on para-urethral devices is impossible.\(^{7,67}\) \textbf{(ENREF 54)} \textbf{(level of evidence 3, grade D)}

The AUS remains the gold standard for the treatment of PPUI with severe UI and after radiation therapy.\(^{11}\) \textbf{(level of evidence 1, grade A)} Patients must be aware that
radiation may increase the risk of complications. (level of evidence 3, grade C) The long-term success of this procedure (59-90%) is well established and outweighs the risk of revision (8-45%) and explantation (7-17%). The freedom of revision at 5 years is estimated at 50-75%. (level of evidence 2) There is a high satisfaction rate of 87-90%. Age is not a contraindication, however, cognitive impairment and lack of manual dexterity may restrict AUS insertion. (level of evidence 3, grade C)

6. Treatment of Mixed Urinary Incontinence

The initial management of MUI should focus on the predominant component, stress or urgency, and should be conservative in nature. Surgery for SUI is not contraindicated in patients with MUI and OAB or DO. (grade B) It is important to counsel patients that the OAB component of UI may not be improve with surgical treatment. (grade B) However, improvement or cure of OAB symptoms after sling anti-incontinence surgery ranges from 50 to 74%. The subjective and objective cure rate is lower than in patients with pure SUI. (level of evidence 3) Due to the paucity of data, it is not possible to use preoperative criteria to predict which patients will have a better outcome. (level of evidence 3)

7. Treatment of Urinary Incontinence in Frail Elderly patients

In the frail elderly patient, the degree of bother to the patient/caregiver, the goals of care, the level of cooperation and the life expectancy must be considered when planning management strategies. (grade C) The treatment expectations from the patient/caregiver should be defined by using the continence paradigm. It is defined as 4 states in which patients can be categorized: incontinent (wet), contained incontinence (pads), dependant continence (assistance, behavioural treatment and medications) and independent continence (dry). Conservative and behavioural treatments should be considered: lifestyle changes (grade C), bladder training for fit patient (grade B) and prompted voiding for frail (grade A-B). Pelvic floor muscle exercises can be offered to cognitively intact patients but data on their efficacy are lacking. (grade C) For female patients with SUI or MUI with predominantly stress, who failed conservative management, age is not a contraindication for surgical treatment. (grade C) For patient with genuine SUI, bulking agents may be effective in some older women. (grade C) In a subset of patients (minimal mobility, advanced dementia and nocturnal urinary incontinence) contained continence is sometimes the only available choice.

8. Conclusion

Urinary incontinence in adults is an evolving and burgeoning medical and surgical field. This guideline provides a concise approach to its evaluation and discusses the various treatment options. The following algorithms summarize the management of UI.
9. Algorithm
9.1 Women

- History
- Physical examination (cough stress test, pelvic floor muscle function)
- Urinalysis and urine culture → if positive, treat and reassess
- 3-day voiding diary
- Treatment expectations
- If needed: quality of life questionnaires, renal function, uroflowmetry, post-void residual volume, cystoscopy and urodynamic testing

SUI

(MUI (treat the most bother part first)

- Lifestyle advice
- Physical therapies
- Scheduled voiding
- Behavioral therapies

UI

UUI

Complicated UI

- Recurrent UI
- Associated with:
 - Pain
 - Hematuria
 - Recurrent UTI
 - Voiding symptoms
 - Pelvic radiotherapy
 - Pelvic surgery
 - Suspected fistula
 - Pelvic organ prolapse
 +/− cystoscopy, upper tract imaging and urodynamics
 Treat accordingly

SUI

Medications (optimized medical therapy)

+/− urodynamics

Urethral hypermobility

- Retropubic suspension
- Bladder neck slings
- MUS

No urethral hypermobility

- Bladder neck slings
- Retropubic MUS
- Bulking agents
- Artificial urinary sphincter

- Change medications
- BoTN-A (off-label)
- Neuromodulation
- Bladder augmentation

Figure 1: Management of urinary incontinence in women.
9.2 Men

- History
- Physical examination (abdominal, rectal, sacral, neurological)
- Treatment expectations
- Urinalysis and urine culture → if positive, treat and reassess
 - Pelvic floor muscle function
 - +/- post-void residual volume
 - +/- PSA
- Questionnaires

SUI (usually post-prostatectomy)

MUI
(treat the most bother part first)

UUI

- Lifestyle interventions
 - Pelvic floor muscle training +/- biofeedback
 - Scheduled voiding and bladder training

- Urodynamics
 - +/- cystoscopy
 - +/- upper tract imaging

If light or moderate
- Male sling
- Artificial urinary sphincter

If severe

With BOO
- alpha-blockers
- 5-ARI
- Surgery
- Antimuscarinics

Refractory
- BoTN-A (off-label)
- Neuromodulation
- Augmentation cystoplasty

Figure 2: Management of urinary incontinence in men.
9.3 Frail Elderly

Active screening of UI

- Assess reversible conditions (DIAPPERS) and treat accordingly and then reassess
- History
- Evaluate treatment expectations regarding the continence paradigm
- Physical examination including cognition, mobility, neurological and rectal examinations
- Urinalysis

SUI
(treat the most bother part first)

MUI
Conservative and behavioral treatments:
- Lifestyle changes
- Bladder training
- Prompted voiding
- Pelvic floor muscle exercises

UUI

DHIC

Significant PVR

SUI

UUI

DHIC

Conservative and behavioral treatments:
- Lifestyle changes
- Bladder training
- Prompted voiding
- Pelvic floor muscle exercises

Medications
- (lowest dose possible)

Asymptomatic
- Observation

Reassess, treat comorbidity and functional impairment
- Sometimes, only possible option, contained continence

- Treat constipation if needed
- Review medications
- +/- Alpha-blockers in men if BOO suspected

Complications:
- UTI
- Pyelonephritis
- Renal failure

Bladder emptying
- Scheduled voiding
- CIC
- Indwelling catheter

Figure 3: Management of urinary incontinence in elderly.
10. References

45. Taylor JA, 3rd, Kuchel GA. Detrusor underactivity: Clinical features and pathogenesis of an

71. Katsumi HK, Rutman MP. Can we predict if overactive bladder symptoms will resolve after sling

11. Appendix A

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Meta-analysis of randomised trials or at least one randomised trial</td>
</tr>
<tr>
<td>2</td>
<td>One well-designed controlled study without randomisation or at least one other type of well-designed quasi-experimental study</td>
</tr>
<tr>
<td>3</td>
<td>Well-designed non-experimental studies (comparative, correlation and case reports)</td>
</tr>
<tr>
<td>4</td>
<td>Expert committee reports or opinions or clinical experience of respected authorities</td>
</tr>
</tbody>
</table>

Level of evidence

<table>
<thead>
<tr>
<th>Grade</th>
<th>Nature of recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clinical studies of good quality and consistency addressing the specific recommendations and including at least one randomised trial Based on level 1 evidence (recommended)</td>
</tr>
<tr>
<td>B</td>
<td>Well-conducted clinical studies, but without randomised clinical trials Consistent level 2 or 3 evidence (recommended)</td>
</tr>
<tr>
<td>C</td>
<td>Made despite the absence of directly applicable clinical studies of good quality Level 4 studies or majority evidence (optional)</td>
</tr>
<tr>
<td>D</td>
<td>Evidence inconsistent/inconclusive (no recommendation possible) or the evidence indicates that the drug should not be recommended</td>
</tr>
</tbody>
</table>

Grade of recommendation